Nicolas Schaeffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2752593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comment on "Structural Study of a Eutectic Solvent Reveals Hydrophobic Segregation and Lack of Hydrogen Bonding between the Components― ACS Sustainable Chemistry and Engineering, 2022, 10, 8669-8670.	3.2	5
2	Factors driving metal partition in ionic liquid-based acidic aqueous biphasic systems. Separation and Purification Technology, 2022, 299, 121720.	3.9	2
3	Solvent extraction in extended hydrogen bonded fluids – separation of Pt(<scp>iv</scp>) from Pd(<scp>ii</scp>) using TOPO-based type V DES. Green Chemistry, 2021, 23, 4540-4550.	4.6	16
4	Using coarse-grained molecular dynamics to understand the effect of ionic liquids on the aggregation of Pluronic copolymer solutions. Physical Chemistry Chemical Physics, 2021, 23, 5824-5833.	1.3	17
5	Selective Sequential Recovery of Zinc and Copper from Acid Mine Drainage. ACS Sustainable Chemistry and Engineering, 2021, 9, 3647-3657.	3.2	16
6	Green separation of lanthanum, cerium and nickel from waste nickel metal hydride battery. Waste Management, 2021, 125, 154-162.	3.7	25
7	A HNO ₃ â€Responsive Aqueous Biphasic System for Metal Separation: Application towards Ce ^{IV} Recovery. ChemSusChem, 2021, 14, 3018-3026.	3.6	8
8	Integrated Production and Separation of Furfural Using an Acidic-Based Aqueous Biphasic System. ACS Sustainable Chemistry and Engineering, 2021, 9, 12205-12212.	3.2	3
9	Non-Ideality in Thymol + Menthol Type V Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 2203-2211.	3.2	72
10	Synthesis of Purine-Based Ionic Liquids and Their Applications. Molecules, 2021, 26, 6958.	1.7	4
11	A Comparison of Cobalt and Platinum Extraction in Hydrophobic and Hydrophilic Ionic Liquids: Implication for Proton Exchange Membrane Fuel Cell Recycling. ACS Sustainable Chemistry and Engineering, 2020, 8, 15865-15874.	3.2	16
12	Selective Separation of Manganese, Cobalt, and Nickel in a Fully Aqueous System. ACS Sustainable Chemistry and Engineering, 2020, 8, 12260-12269.	3.2	18
13	Integrated Leaching and Separation of Metals Using Mixtures of Organic Acids and Ionic Liquids. Molecules, 2020, 25, 5570.	1.7	8
14	Unravelling the Interactions between Surface-Active Ionic Liquids and Triblock Copolymers for the Design of Thermal Responsive Systems. Journal of Physical Chemistry B, 2020, 124, 7046-7058.	1.2	12
15	Using coarse-grained molecular dynamics to rationalize biomolecule solubilization mechanisms in ionic liquid-based colloidal systems. Physical Chemistry Chemical Physics, 2020, 22, 24771-24783.	1.3	9
16	Non-ionic hydrophobic eutectics – versatile solvents for tailored metal separation and valorisation. Green Chemistry, 2020, 22, 2810-2820.	4.6	67
17	Improved coarse-grain model to unravel the phase behavior of 1-alkyl-3-methylimidazolium-based ionic liquids through molecular dynamics simulations. Journal of Colloid and Interface Science, 2020, 574, 324-336.	5.0	28
18	Rationalizing the Phase Behavior of Triblock Copolymers through Experiments and Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 21224-21236.	1.5	33

NICOLAS SCHAEFFER

#	Article	IF	CITATIONS
19	Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: the quest for type V DES. Chemical Communications, 2019, 55, 10253-10256.	2.2	272
20	Temperature-responsive extraction of violacein using a tuneable anionic surfactant-based system. Chemical Communications, 2019, 55, 8643-8646.	2.2	10
21	The Role of Charge Transfer in the Formation of Type I Deep Eutectic Solvent-Analogous Ionic Liquid Mixtures. Molecules, 2019, 24, 3687.	1.7	21
22	Greener Terpene–Terpene Eutectic Mixtures as Hydrophobic Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 17414-17423.	3.2	85
23	Mechanisms of phase separation in temperature-responsive acidic aqueous biphasic systems. Physical Chemistry Chemical Physics, 2019, 21, 7462-7473.	1.3	23
24	Synergistic Aqueous Biphasic Systems: A New Paradigm for the "One-Pot―Hydrometallurgical Recovery of Critical Metals. ACS Sustainable Chemistry and Engineering, 2019, 7, 1769-1777.	3.2	28
25	Sustainable Extraction and Separation of Rhenium and Molybdenum from Model Copper Mining Effluents Using a Polymeric Aqueous Two-Phase System. ACS Sustainable Chemistry and Engineering, 2019, 7, 1778-1785.	3.2	11
26	Mechanism of ionic-liquid-based acidic aqueous biphasic system formation. Physical Chemistry Chemical Physics, 2018, 20, 9838-9846.	1.3	26
27	Ionicâ€Liquidâ€Based Acidic Aqueous Biphasic Systems for Simultaneous Leaching and Extraction of Metallic Ions. Angewandte Chemie - International Edition, 2018, 57, 1563-1566.	7.2	82
28	Ionicâ€Liquidâ€Based Acidic Aqueous Biphasic Systems for Simultaneous Leaching and Extraction of Metallic Ions. Angewandte Chemie, 2018, 130, 1579-1582.	1.6	13
29	Recovery of metals from waste electrical and electronic equipment (WEEE) using unconventional solvents based on ionic liquids. Critical Reviews in Environmental Science and Technology, 2018, 48, 859-922.	6.6	63
30	Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals. Chemical Communications, 2018, 54, 8104-8107.	2.2	116
31	Understanding the fundamentals of acid-induced ionic liquid-based aqueous biphasic system. Physical Chemistry Chemical Physics, 2018, 20, 16477-16484.	1.3	12
32	Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a BrÃ,nsted acidic ionic liquid, 1â€methylimidazolium hydrogen sulfate. Journal of Chemical Technology and Biotechnology, 2017, 92, 2731-2738.	1.6	20
33	Use of extraction chromatography in the recycling of critical metals from thin film leach solutions. Inorganica Chimica Acta, 2017, 457, 53-58.	1.2	11
34	Solvent-Mediated Crystallization of Nanocrystal 3D Assemblies of Silver Nanocrystals: Unexpected Superlattice Ripening. Chemistry of Materials, 2016, 28, 293-302.	3.2	27
35	Interactions between trivalent rare earth oxides and mixed [Hbet][Tf2N]:H2O systems in the development of a one-step process for the separation of light from heavy rare earth elements. Inorganica Chimica Acta, 2016, 439, 55-60.	1.2	22