
Douglas W Strand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2752451/publications.pdf Version: 2024-02-01

DOLICIAS W STRAND

#	Article	IF	CITATIONS
1	MRI Features Associated with Histology of Benign Prostatic Hyperplasia Nodules: Generation of a Predictive Model. Journal of Endourology, 2022, 36, 381-386.	2.1	1
2	5â€Alpha reductase inhibitors induce a prostate luminal to club cell transition in human benign prostatic hyperplasia. Journal of Pathology, 2022, 256, 427-441.	4.5	28
3	PSA density is associated with BPH cellular composition. Prostate, 2022, 82, 1162-1169.	2.3	3
4	Glucocorticoids are induced while dihydrotestosterone levels are suppressed in 5â€alpha reductase inhibitor treated human benign prostate hyperplasia patients. Prostate, 2022, 82, 1378-1388.	2.3	7
5	The Roles of ZnT1 and ZnT4 in Glucose-Stimulated Zinc Secretion in Prostate Epithelial Cells. Molecular Imaging and Biology, 2021, 23, 230-240.	2.6	7
6	Real-World Application of Pre-Orchiectomy miR-371a-3p Test in Testicular Germ Cell Tumor Management. Journal of Urology, 2021, 205, 137-144.	0.4	28
7	A multi-omic investigation of male lower urinary tract symptoms: Potential role for JC virus. PLoS ONE, 2021, 16, e0246266.	2.5	7
8	Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity. Cell Stem Cell, 2021, 28, 685-701.e7.	11.1	57
9	Serum Small RNA Sequencing and miR-375 Assay Do Not Identify the Presence of Pure Teratoma at Postchemotherapy Retroperitoneal Lymph Node Dissection. European Urology Open Science, 2021, 26, 83-87.	0.4	26
10	Progenitors in prostate development and disease. Developmental Biology, 2021, 473, 50-58.	2.0	10
11	The prostaglandin pathway is activated in patients who fail medical therapy for benign prostatic hyperplasia with lower urinary tract symptoms. Prostate, 2021, 81, 944-955.	2.3	5
12	Singleâ€cell analysis of mouse and human prostate reveals novel fibroblasts with specialized distribution and microenvironment interactions. Journal of Pathology, 2021, 255, 141-154.	4.5	39
13	A mechanism linking perinatal 2,3,7,8 tetrachlorodibenzo-p-dioxin exposure to lower urinary tract dysfunction in adulthood. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	4
14	A Review of Prostate Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and Disease. International Journal of Molecular Sciences, 2021, 22, 13097.	4.1	5
15	Serum MicroRNA-371a-3p Levels Predict Viable Germ Cell Tumor in Chemotherapy-naÃ ⁻ ve Patients Undergoing Retroperitoneal Lymph Node Dissection. European Urology, 2020, 77, 290-292.	1.9	48
16	Tissue-Specific Regulation of the Wnt/β-Catenin Pathway by PAGE4 Inhibition of Tankyrase. Cell Reports, 2020, 32, 107922.	6.4	7
17	Perivascular mesenchymal cells control adipose-tissue macrophage accrual in obesity. Nature Metabolism, 2020, 2, 1332-1349.	11.9	53
18	Stromal reactivity differentially drives tumour cell evolution and prostate cancer progression. Nature Ecology and Evolution, 2020, 4, 870-884.	7.8	30

DOUGLAS W STRAND

#	Article	IF	CITATIONS
19	Urethral luminal epithelia are castrationâ€insensitive cells of the proximal prostate. Prostate, 2020, 80, 872-884.	2.3	53
20	Identification and characterization of cellular heterogeneity within the developing renal interstitium. Development (Cambridge), 2020, 147, .	2.5	59
21	Obesity-associated inflammation induces androgenic to estrogenic switch in the prostate gland. Prostate Cancer and Prostatic Diseases, 2020, 23, 465-474.	3.9	15
22	Serum microRNA-371a-3p levels to predict viable germ cell tumor in chemotherapy-naÃ ⁻ ve patients undergoing retroperitoneal lymph node dissection Journal of Clinical Oncology, 2020, 38, 417-417.	1.6	1
23	Expansion of Luminal Progenitor Cells in the Aging Mouse and Human Prostate. Cell Reports, 2019, 28, 1499-1510.e6.	6.4	56
24	Distinct expression patterns of SULT2B1b in human prostate epithelium. Prostate, 2019, 79, 1256-1266.	2.3	3
25	EDITORIAL COMMENT. Urology, 2019, 129, 163-164.	1.0	0
26	A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra. Cell Reports, 2018, 25, 3530-3542.e5.	6.4	204
27	Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell, 2018, 34, 996-1011.e8.	16.8	190
28	Prostatic collagen architecture in neutered and intact canines. Prostate, 2018, 78, 839-848.	2.3	11
29	Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. ELife, 2018, 7, .	6.0	227
30	DNA methylation in development and disease: an overview for prostate researchers. American Journal of Clinical and Experimental Urology, 2018, 6, 197-218.	0.4	4
31	Androgenic to oestrogenic switch in the human adult prostate gland is regulated by epigenetic silencing of steroid 51±-reductase 2. Journal of Pathology, 2017, 243, 457-467.	4.5	24
32	Prostate cancer xenografts and hormone induced prostate carcinogenesis. Differentiation, 2017, 97, 23-32.	1.9	13
33	OMIPâ€040: Optimized gating of human prostate cellular subpopulations. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 1147-1149.	1.5	6
34	MP17-07 ANDROGENIC TO ESTROGENIC SWITCH IN PROSTATE GLAND AS A RESULT OF EPIGENETIC SILENCING OF STEROID 5-? REDUCTASE 2. Journal of Urology, 2017, 197, .	0.4	0
35	Molecular pathogenesis of human prostate basal cell hyperplasia. Prostate, 2017, 77, 1344-1355.	2.3	12
36	Targeting phenotypic heterogeneity in benign prostatic hyperplasia. Differentiation, 2017, 96, 49-61.	1.9	48

DOUGLAS W STRAND

#	Article	IF	CITATIONS
37	Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers. ELife, 2017, 6, .	6.0	38
38	NFâ€̂₽B and androgen receptor variant expression correlate with human BPH progression. Prostate, 2016, 76, 491-511.	2.3	49
39	Advances in prostate cancer research models: From transgenic mice to tumor xenografting models. Asian Journal of Urology, 2016, 3, 64-74.	1.2	25
40	Non-Cell-Autonomous Regulation of Prostate Epithelial Homeostasis by Androgen Receptor. Molecular Cell, 2016, 63, 976-989.	9.7	80
41	NFâ€̂ºB and androgen receptor variant 7 induce expression of SRD5A isoforms and confer 5ARI resistance. Prostate, 2016, 76, 1004-1018.	2.3	22
42	Isolation and analysis of discreet human prostate cellular populations. Differentiation, 2016, 91, 139-151.	1.9	16
43	Nfib Regulates Transcriptional Networks That Control the Development of Prostatic Hyperplasia. Endocrinology, 2016, 157, 1094-1109.	2.8	27
44	Abstract 860: ESR1 coregulator binding inhibitor (ECBI): a novel agent for treating hormone therapy-resistant breast cancer. , 2016, , .		0
45	The many ways to make a luminal cell and a prostate cancer cell. Endocrine-Related Cancer, 2015, 22, T187-T197.	3.1	23
46	Abstract PR15: The prognostic power of stromal reactivity: An integrated approach to prostate cancer evolution. , 2015, , .		0
47	SOX2 expression in the developing, adult, as well as, diseased prostate. Prostate Cancer and Prostatic Diseases, 2014, 17, 301-309.	3.9	44
48	Surgical intervention for symptomatic benign prostatic hyperplasia is correlated with expression of the APâ€1 transcription factor network. Prostate, 2014, 74, 669-679.	2.3	37
49	FOXA1 deletion in luminal epithelium causes prostatic hyperplasia and alteration of differentiated phenotype. Laboratory Investigation, 2014, 94, 726-739.	3.7	39
50	Deficiency in Metabolic Regulators PPAR ^{ĵ3} and PTEN Cooperates to Drive Keratinizing Squamous Metaplasia in Novel Models of Human Tissue Regeneration. American Journal of Pathology, 2013, 182, 449-459.	3.8	22
51	SPARCL1 suppresses metastasis in prostate cancer. Molecular Oncology, 2013, 7, 1019-1030.	4.6	32
52	Chronic Cyclic Bladder Over Distention Up-Regulates Hypoxia Dependent Pathways. Journal of Urology, 2013, 190, 1603-1609.	0.4	13
53	PPARÎ ³ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation. Cell Death and Disease, 2012, 3, e361-e361.	6.3	48

DOUGLAS W STRAND

#	Article	IF	CITATIONS
55	PPARÎ ³ : A molecular link between systemic metabolic disease and benign prostate hyperplasia. Differentiation, 2011, 82, 220-236.	1.9	41
56	Altered TGF-β Signaling in a Subpopulation of Human Stromal Cells Promotes Prostatic Carcinogenesis. Cancer Research, 2011, 71, 1272-1281.	0.9	158
57	Functional Remodeling of Benign Human Prostatic Tissues <i>In Vivo</i> by Spontaneously Immortalized Progenitor and Intermediate Cells. Stem Cells, 2010, 28, 344-356.	3.2	68
58	Perspectives on Tissue Interactions in Development and Disease. Current Molecular Medicine, 2010, 10, 95-112.	1.3	37
59	Cancer associated fibroblasts in cancer pathogenesis. Seminars in Cell and Developmental Biology, 2010, 21, 33-39.	5.0	323
60	TGF-β1 Induces an Age-Dependent Inflammation of Nerve Ganglia and Fibroplasia in the Prostate Gland Stroma of a Novel Transgenic Mouse. PLoS ONE, 2010, 5, e13751.	2.5	36
61	Spontaneous immortalization of human dermal microvascular endothelial cells. World Journal of Stem Cells, 2010, 2, 114.	2.8	8
62	Modeling stromal-epithelial interactions in disease progression. Discovery Medicine, 2010, 9, 504-11.	0.5	8
63	The Role of Transforming Growth Factor-β–Mediated Tumor-Stroma Interactions in Prostate Cancer Progression: An Integrative Approach. Cancer Research, 2009, 69, 7111-7120.	0.9	61
64	Fibroblast growth factor-2 mediates transforming growth factor-Î ² action in prostate cancer reactive stroma. Oncogene, 2008, 27, 450-459.	5.9	80