

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2751999/publications.pdf Version: 2024-02-01

Μ/ει ΥλΝ

#	Article	lF	CITATIONS
1	Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. Nature Communications, 2020, 11, 3699.	5.8	78
2	Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Research, 2019, 12, 3075-3084.	5.8	73
3	Enhanced photoluminescence of CsPbBr ₃ @Ag hybrid perovskite quantum dots. Journal of Materials Chemistry C, 2017, 5, 8187-8193.	2.7	68
4	Low‣aturationâ€Intensity, Highâ€Photostability, and Highâ€Resolution STED Nanoscopy Assisted by CsPbBr ₃ Quantum Dots. Advanced Materials, 2018, 30, e1800167.	11.1	64
5	Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach. Nanoscale, 2018, 10, 16252-16260.	2.8	46
6	Solo Smart Fluorogenic Probe for Potential Cancer Diagnosis and Tracking in Vivo Tumorous Lymphatic Systems via Distinct Emission Signals. Analytical Chemistry, 2020, 92, 1541-1548.	3.2	40
7	Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples. Photonics Research, 2017, 5, 176.	3.4	36
8	Support Vector Machine Classification of Nonmelanoma Skin Lesions Based on Fluorescence Lifetime Imaging Microscopy. Analytical Chemistry, 2019, 91, 10640-10647.	3.2	30
9	Halogen-doped phosphorescent carbon dots for grayscale patterning. Light: Science and Applications, 2022, 11, .	7.7	27
10	Aberration correction for improving the image quality in STED microscopy using the genetic algorithm. Nanophotonics, 2018, 7, 1971-1980.	2.9	26
11	Effective Repeatable Mechanoluminescence in Heterostructured Li _{1â~`} <i>_x</i> Na <i>_x</i> NbO ₃ : Pr ³⁺ . Small, 2021, 17, e2103441.	5.2	26
12	A Fluorescent Probe for Stimulated Emission Depletion Super-Resolution Imaging of Vicinal-Dithiol-Proteins on Mitochondrial Membrane. Bioconjugate Chemistry, 2018, 29, 1446-1453.	1.8	24
13	STORM imaging of mitochondrial dynamics using a vicinal-dithiol-proteins-targeted probe. Biomaterials, 2020, 243, 119938.	5.7	23
14	Mechanistic Investigation of Upconversion Photoluminescence in All-Inorganic Perovskite CsPbBrl ₂ Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 3152-3156.	1.5	22
15	Interface synergistic effects induced multi-mode luminescence. Nano Research, 2022, 15, 4457-4465.	5.8	21
16	ICT and AIE Characteristics Two Cyano-Functionalized Probes and Their Photophysical Properties, DFT Calculations, Cytotoxicity, and Cell Imaging Applications. Molecules, 2020, 25, 585.	1.7	20
17	Designing Subâ€2â€nm Organosilica Nanohybrids for Farâ€Field Superâ€Resolution Imaging. Angewandte Chemie - International Edition, 2020, 59, 746-751.	7.2	19
18	Responsive Carbonized Polymer Dots for Optical Super-resolution and Fluorescence Lifetime Imaging of Nucleic Acids in Living Cells. ACS Applied Materials & Interfaces, 2021, 13, 50733-50743.	4.0	18

Wei Yan

#	Article	IF	CITATIONS
19	Dynamic fluorescence lifetime imaging based on acousto-optic deflectors. Journal of Biomedical Optics, 2014, 19, 116004.	1.4	11
20	Dualâ€color <scp>STED</scp> superâ€resolution microscope using a single laser source. Journal of Biophotonics, 2020, 13, e202000057.	1.1	11
21	Noval Dual-Emission Fluorescence Carbon Dots as a Ratiometric Probe for Cu2+ and ClOâ^ Detection. Nanomaterials, 2021, 11, 1232.	1.9	11
22	Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes. Frontiers of Optoelectronics, 2015, 8, 177-182.	1.9	10
23	Deep Penetration Microscopic Imaging with Non-Diffracting Airy Beams. Membranes, 2021, 11, 391.	1.4	10
24	Ultralow power demand in fluorescence nanoscopy with digitally enhanced stimulated emission depletion. Nanophotonics, 2020, 9, 831-839.	2.9	10
25	Increasing fluorescence lifetime for resolution improvement in stimulated emission depletion nanoscopy. Journal of Biophotonics, 2019, 12, e201800315.	1.1	9
26	Super-resolution Microscopy for Biological Imaging. Advances in Experimental Medicine and Biology, 2021, 3233, 23-43.	0.8	9
27	Monitoring the Cellular Delivery of Doxorubicin–Cu Complexes in Cells by Fluorescence Lifetime Imaging Microscopy. Journal of Physical Chemistry A, 2020, 124, 4235-4240.	1.1	8
28	Low-power STED nanoscopy based on temporal and spatial modulation. Nano Research, 2022, 15, 3479-3486.	5.8	8
29	Shedding New Lights Into STED Microscopy: Emerging Nanoprobes for Imaging. Frontiers in Chemistry, 2021, 9, 641330.	1.8	7
30	Disulfide-Reduction-Triggered Spontaneous Photoblinking Cy5 Probe for Nanoscopic Imaging of Mitochondrial Dynamics in Live Cells. Analytical Chemistry, 2021, 93, 2596-2602.	3.2	6
31	Low-Power Two-Color Stimulated Emission Depletion Microscopy for Live Cell Imaging. Biosensors, 2021, 11, 330.	2.3	6
32	Creation of an ultralong non-diffracting magnetization light beam with multiple energy oscillations using the inverse Faraday effect. Optics Letters, 2019, 44, 5537.	1.7	6
33	Elimination of Reâ€excitation in Stimulated Emission Depletion Nanoscopy Based on Photon Extraction in a Phasor Plot. Laser and Photonics Reviews, 2020, 14, 1900352.	4.4	5
34	Aberration Correction to Optimize the Performance of Two-Photon Fluorescence Microscopy Using the Genetic Algorithm. Microscopy and Microanalysis, 2022, 28, 383-389.	0.2	5
35	Improving the image quality in STED nanoscopy using frequency spectrum modulation. Journal of Biophotonics, 2021, 14, e202000402.	1.1	4
36	New advances in the research of stimulated emission depletion super-resolution microscopy. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 108702.	0.2	4

Wei Yan

#	Article	IF	CITATIONS
37	Multi-Color Two-Photon Microscopic Imaging Based on a Single-Wavelength Excitation. Biosensors, 2022, 12, 307.	2.3	4
38	Designing Subâ€2 nm Organosilica Nanohybrids for Farâ€Field Superâ€Resolution Imaging. Angewandte Chemie, 2020, 132, 756-761.	1.6	3
39	Cdâ€free InP / ZnSeS quantum dots for ultrahighâ€resolution imaging of stimulated emission depletion. Journal of Biophotonics, 2021, 14, e202100230.	1.1	3
40	Implementation of a fluorescence spatiotemporal modulation super-resolution microscope. Optics Letters, 2022, 47, 581.	1.7	3
41	Mitochondrial structural variations in the process of mitophagy. Journal of Biophotonics, 2022, 15, e202200006.	1.1	3
42	Nondestructive in situ detection of microbubble defects in the screen by optical coherence tomography. European Physical Journal: Special Topics, 2022, 231, 613-620.	1.2	3
43	Label free deep penetration single photon microscopic imaging with ultralong anti-diffracting beam. Applied Physics Letters, 2022, 121, .	1.5	3
44	Tunable plasmonic focus array generated by Dammann grating in tightly focusing system. Journal of Optics (United Kingdom), 2019, 21, 015001.	1.0	2
45	A Wideband Omni-directional Antenna Based on Printed Log-Periodic Element. , 2020, , .		2
46	Study on Aberration Correction of Adaptive Optics Based on Convolutional Neural Network. Photonics, 2021, 8, 377.	0.9	1
47	Nanodrug Transmembrane Transport Research Based on Fluorescence Correlation Spectroscopy. Membranes, 2021, 11, 891.	1.4	1
48	A Wide-Beamwidth Magneto-Electric Dipole Antenna with Low Cross-Polarization and High Front-to-Back Ratio. , 2020, , .		1
49	Super-Resolution Imaging Test of Novel Mitochondrial Probe. , 2020, , .		0
50	Study on a novel probe for stimulated emission depletion Super-resolution Imaging of Mitochondria. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 168702.	0.2	0
51	Low-power two-color STED microscopy based on phasor plot analysis. , 2020, , .		Ο