
Liu Jingsong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2751738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High power density at low electric fields in dopamine modified barium titanate based poly(arylene) Tj ETQq1 1	0.784314 rg	gBT_/Overloc
2	Dependence of Phase Structure and Discharge Performance on the Temperature of Perovskite Composited Ceramics. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	0
3	High energy storage efficiency and fast discharge property of temperature stabilized Ba0.4Sr0.6TiO3–Bi(Mg0.5Ti0.5)O3 ceramics. Ceramics International, 2022, 48, 23518-23526.	4.8	9
4	Temperature stability of lead-free BST-BZN relaxor ferroelectric ceramics for energy storage capacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 752-763.	2.2	9
5	Porous MgO pompons as a binder for the molten electrolyte applied in thermal batteries. Ionics, 2021, 27, 1271-1278.	2.4	4
6	Ultra-high quality factor of Mg6Ti5O16-based microwave dielectric ceramics with temperature stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 2547-2556.	2.2	8
7	Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides. Journal of Materials Science: Materials in Electronics, 2021, 32, 5886-5897.	2.2	5
8	Structural and dielectric properties of (1-x)(Sr0.7Pb0.15Bi0.1)TiO3-x(Bi0.5Na0.5)TiO3 energy storage ceramic capacitors. Journal of Alloys and Compounds, 2021, 861, 158535.	5.5	4
9	NiNb 2 O 6 â€BaTiO 3 /poly(arylene ether nitriles) composite film dielectrics with excellent flexibility and high permittivity for organic film capacitors. Polymer Composites, 2020, 41, 94-101.	4.6	5
10	Formation mechanism and microstructure evolution of Ba 2 Ti 9 O 20 ceramics by reaction sintering method. Journal of the American Ceramic Society, 2020, 103, 1079-1087.	3.8	13
11	Improvement of microwave dielectric properties of Ba2Ti9O20 ceramics using [Zn1/3Nb2/3]4+ substitution for Ti4+. Journal of Materials Science: Materials in Electronics, 2020, 31, 15184-15191.	2.2	3
12	Enhanced energy density of poly(arylene ether nitriles) composites filled with surface engineered BaTiO3 nanoparticles. Sensors and Actuators A: Physical, 2020, 315, 112185.	4.1	10
13	High efficiency and power density relaxor ferroelectric Sr0.875Pb0.125TiO3- Bi(Mg0.5Zr0.5)O3 ceramics for pulsed power capacitors. Journal of the European Ceramic Society, 2020, 40, 2907-2916.	5.7	24
14	Improvement of quality factor of SrTiO ₃ dielectric ceramics with high dielectric constant using Sm ₂ O ₃ . Journal of the American Ceramic Society, 2019, 102, 3849-3853.	3.8	13
15	Stabilizing temperatureâ€capacitance dependence of (Sr, Pb,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 1 Journal of the American Ceramic Society, 2019, 102, 4029-4037.	.87 Td (Bi)Ti(3.8	O ₃₁₃
16	Effect of ZnO on Mg ₂ TiO ₄ –MgTiO ₃ –CaTiO ₃ microwave dielectric ceramics prepared by reaction sintering route. Advances in Applied Ceramics, 2019, 118, 98-105.	1.1	24
17	Phase compositions and microwave dielectric properties of MgTiO3-based ceramics obtained by reaction-sintering method. Journal of Electroceramics, 2018, 40, 360-364.	2.0	12
18	Ion Transport in MgO Porous Fibers Retained Molten Salt Electrolytes for Thermal Batteries. Journal of the Electrochemical Society, 2018, 165, A736-A740.	2.9	6

Liu Jingsong

#	Article	IF	CITATIONS
19	NiNb ₂ O ₆ â€BaTiO ₃ Ceramics for Energyâ€Storage Capacitors. Energy Technology, 2018, 6, 899-905.	3.8	15
20	High discharge efficiency of (Sr, Pb, Bi) TiO3 relaxor ceramics for energy-storage application. Applied Physics Letters, 2018, 112, .	3.3	29
21	0.73ZrTi ₂ O ₆ –0.27MgNb ₂ O ₆ microwave dielectric ceramics modified by Al ₂ O ₃ addition. Journal of the American Ceramic Society, 2018, 101, 5110-5119.	3.8	18
22	Effects of surface fluoride-functionalizing of glass fiber on the properties of PTFE/glass fiber microwave composites. RSC Advances, 2017, 7, 22810-22817.	3.6	20
23	Hydrofluoric Acid Modified Porous Magnesia Fibers as Immobilizing Agent for Molten Electrolyte in Thermal Battery. Electrochemistry, 2017, 85, 451-455.	1.4	5
24	Using MgO fibers to immobilize molten electrolyte in thermal batteries. Journal of Solid State Electrochemistry, 2016, 20, 1355-1360.	2.5	13
25	Structure and dielectric properties of zinc borate glass–ceramics modified by magnesium. Journal of Materials Science: Materials in Electronics, 2016, 27, 7109-7114.	2.2	14
26	Ultra-low sintering temperature ceramics for LTCC applications: a review. Journal of Materials Science: Materials in Electronics, 2015, 26, 9414-9423.	2.2	85
27	Tape casting and dielectric properties of SiO2-filled glass composite ceramic with an ultra-low sintering temperature. Journal of Materials Science: Materials in Electronics, 2014, 25, 5114-5118.	2.2	9
28	Relaxor behavior and Raman spectra of CuO-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric ceramics. Journal of Advanced Ceramics, 2014, 3, 177-183.	17.4	9
29	Domain structure and leakage mechanism of BiFeO3 thin films deposited at different temperatures. Journal of Materials Science: Materials in Electronics, 2014, 25, 2998-3002.	2.2	2
30	Dielectric behavior and Raman spectra of lanthanum-doped lead magnesium niobate ceramics. Journal of Materials Science: Materials in Electronics, 2011, 22, 1188-1194.	2.2	7
31	Magnetic transition behavior and electromagnetic properties of Zr substituted Bi0.5Y1.5â^'xCa1+xZrxV0.5Fe4.5â^'xO12 garnets. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	1