Ae Ran Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/27517/publications.pdf

Version: 2024-02-01

1040056 1199594 48 203 9 12 citations h-index g-index papers 48 48 48 137 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Structures, phase transitions, thermodynamic properties, and structural dynamics of eco-friendly hybrid perovskite NH3(CH2)3NH3CoCl4 and NH3(CH2)5NH3CoCl4 crystals. Solid State Sciences, 2022, , 106927.	3.2	2
2	Characterization on Lead-Free Hybrid Perovskite [NH3(CH2)5NH3]CuCl4: Thermodynamic Properties and Molecular Dynamics. Molecules, 2022, 27, 4546.	3.8	3
3	Structures, local symmetries, and paramagnetic effects in Cs2Zn1-Cu Cl4 (yÂ=Â0, 0.3, 0.5, 0.7, and 1) mixed crystals by solid-state NMR. Journal of Molecular Structure, 2021, 1228, 129456.	3.6	O
4	Thermal property, structural characterization, and physical property of cation and anion in organic–inorganic perovskite [(CH2)3(NH3)2]CdCl4 crystal. Journal of Solid State Chemistry, 2021, 295, 121909.	2.9	6
5	Thermal decomposition and structural dynamics in perovskite (C2H5NH3)2CdCl4 crystals. Journal of Thermal Analysis and Calorimetry, 2020, 142, 2243-2249.	3.6	2
6	Structural dynamics of CH3NH3+ and PbBr3â^' in tetragonal and cubic phases of CH3NH3PbBr3 hybrid perovskite by nuclear magnetic resonance. Scientific Reports, 2020, 10, 13140.	3.3	8
7	Facile Production of Graphenic Microsheets and Their Assembly via Water-Based, Surfactant-Aided Mechanical Deformations. ACS Applied Materials & D	8.0	6
8	Thermodynamic, Physical, and Structural Characteristics in Layered Hybrid Type (C2H5NH3)2MCl4 (M =) Tj ETQc	10 <u>9.</u> 8 rgB	T / Gverlock 10
9	Study on Paramagnetic Interactions of (CH3NH3)2CoBr4 Hybrid Perovskites Based on Nuclear Magnetic Resonance (NMR) Relaxation Time. Molecules, 2019, 24, 2895.	3.8	9
10	Thermal and structural properties, and molecular dynamics in organic–inorganic hybrid perovskite (C2H5NH3)2ZnCl4. RSC Advances, 2019, 9, 38032-38037.	3.6	3
11	Continuous Synthesis of Structurally Uniform Graphene Oxide Materials in a Model Taylor–Couette Flow Reactor. Industrial & Engineering Chemistry Research, 2019, 58, 1167-1176.	3.7	16
12	Cation dynamics by 1H and 13C MAS NMR in hybrid organic–inorganic (CH3CH2NH3)2CuCl4. RSC Advances, 2018, 8, 34110-34115.	3.6	5
13	Proton dynamics in tetramethylammonium cadmium chloride (CH3)4NCdCl3single crystal by using1H NMR measurements. Journal of Applied Physics, 2018, 124, 205501.	2.5	3
14	lonic dynamics of the cation in organic–inorganic hybrid compound (CH ₃ NH ₃) _{>4} MCl ₄ (M = Cu and Zn) by ¹ H MAS NMR, ¹³ C CP MAS NMR, and ¹⁴ N NMR. RSC Advances, 2018, 8, 18656-18662.	3.6	14
15	NMR spin-lattice relaxation study of 7Li and 93Nb nuclei in Ti- or Fe-doped LiNbO3:Mg single crystals. AIP Advances, 2016, 6, 045102.	1.3	3
16	Study of Two Inequivalent Hydrogen Bonds in KHSO4 Single Crystals Using Nuclear Magnetic Resonance. Applied Magnetic Resonance, 2016, 47, 1171-1177.	1.2	0
17	Nuclear magnetic resonance for differentiating two inequivalent M sites in double anhydrous M2CuCl4 (MÂ=ÂK, Cs, and NH4) single crystals. Solid State Sciences, 2016, 55, 169-173.	3.2	4
18	Structural and thermodynamic properties of Tutton salt K2Zn(SO4)2·6H2O. Journal of Thermal Analysis and Calorimetry, 2016, 123, 371-376.	3.6	13

#	Article	IF	CITATIONS
19	1H and 2H Magic Angle Spinning Nuclear Magnetic Resonance Study of Phase Transition in KH3(SeO3)2 and Deuterated KD3(SeO3)2. Applied Magnetic Resonance, 2015, 46, 1293-1300.	1.2	1
20	Nuclear quadrupole coupling parameters and structural nature of the nonlinear optical material Li 2 B 4 O 7 by NMR. Solid State Nuclear Magnetic Resonance, 2015, 66-67, 40-44.	2.3	2
21	Crystal growth and thermal properties of the Tutton salt Cs2Fe(SO4)2·6H2O single crystal. Journal of Thermal Analysis and Calorimetry, 2015, 119, 239-243.	3.6	3
22	Ferroelastic property of tetramethylammonium tetrachlorozincate tetrachlorocuprate, $[N(CH3)4]2Zn1\hat{a}^{3}xCuxCl4$ (x = 0, 0.1, 0.3, 0.5, and 1). RSC Advances, 2015, 5, 27249-27255.	3.6	3
23	Structural characteristics for phase transitions of [N(CH3)4]2CuCl4 by 13C CP/MAS NMR and 14N NMR. Solid State Nuclear Magnetic Resonance, 2015, 70, 43-47.	2.3	2
24	Structural Nature of 7Li and 11B Sites by Static NMR and MAS NMR in Nonlinear Optical Material LiCsB6O10. Applied Magnetic Resonance, 2014, 45, 169-178.	1.2	0
25	High-Temperature Phase Transition in N(CH3)4CdCl3 Studied Using Static NMR and MAS NMR. Applied Magnetic Resonance, 2014, 45, 9-17.	1.2	1
26	Thermodynamic properties and molecular dynamics of (NH4)2Zn(SO4)2·6H2O studied by single-crystal NMR and MAS NMR. Journal of Thermal Analysis and Calorimetry, 2013, 114, 699-703.	3.6	1
27	Nuclear magnetic resonance study of superprotonic conductor Rb4LiH3(SO4)4 single crystals. Solid State Nuclear Magnetic Resonance, 2013, 54, 41-46.	2.3	0
28	Thermodynamic properties and phase transitions of Tutton salt (NH4)2Co(SO4)2·6H2O crystals. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1619-1623.	3.6	17
29	Nuclear Magnetic Resonance Relaxation Study of the Phase Transitions of Rb2CuCl4·2H2O and Cs2MnCl4·2H2O Single Crystals. Applied Magnetic Resonance, 2012, 42, 89-100.	1.2	3
30	Study of the molecular dynamics and phase transitions of (, Rb, and Cs) single crystals. Solid State Communications, 2011, 151, 1631-1634.	1.9	7
31	Study on the structural properties and relaxation mechanisms in LiRb1â^'x(NH4)xSO4 (x=0, 0.5, and 1) mixed crystals by 1H, 7Li, and 87Rb nuclear magnetic resonance. Solid State Nuclear Magnetic Resonance, 2011, 39, 14-20.	2.3	1
32	New ferroelastic properties and the paraelectric-ferroelectric-paraelectric phase transitions of Rochelle salt. Journal of Applied Physics, 2011, 110, 033520.	2.5	4
33	NMR study of the relaxation mechanisms in single crystals of the nonlinear optical material bismuth triborate. Physica Status Solidi (B): Basic Research, 2010, 247, 2290-2294.	1.5	5
34	Structural phase transitions of Na(DxH1–x)3(SeO3)2 single crystals studied by observation of H2 and N23a nuclear magnetic resonance. Journal of Applied Physics, 2010, 108, 114104.	2.5	0
35	²³ Na and ⁸⁷ Rb relaxation study of the structural phase transitions in the Tutton salts Na ₂ Zn(SO ₄) ₂ A·6H ₂ O and Rb ₂ Zn(SO ₄) _{A·6H₂O single crystals. Physica Status Solidi (B): Basic Research, 2010, 247, 1242-1246.}	1.5	10
36	H 1 and L7i nuclear magnetic resonance study of the superionic crystals K4LiH3(SO4)4 and (NH4)4LiH3(SO4)4. Journal of Applied Physics, 2010, 107, .	2.5	10

#	Article	IF	Citations
37	Raman processes of KNaSO ₄ and K ₃ Na(SO ₄) ₂ single crystals studied by ²³ Na and ³⁹ K nuclear magnetic resonance. Physica Status Solidi (B): Basic Research, 2009, 246, 2373-2378.	1.5	0
38	Study on the phase transitions by nuclear magnetic resonance of \hat{l} ±-type RbAl(SO4)2 \hat{A} ·12H2O and \hat{l} ² -type CsAl(SO4)2 \hat{A} ·12H2O single crystals. Solid State Nuclear Magnetic Resonance, 2009, 36, 45-51.	2.3	10
39	A nuclear magnetic resonance study of the phase transitions and electric quadrupole Raman processes of M5H3(SO4)4·H2O (M=Na, K, Rb, and Cs) single crystals. Solid State Nuclear Magnetic Resonance, 2009, 36, 52-59.	2.3	10
40	Nuclear Magnetic Resonance Relaxation Study of the Phase Transformations of LiNH4SO4and LiND4SO4Single Crystals: The Roles of Li, NH4and ND4lons. Journal of the Physical Society of Japan, 2009, 78, 104701.	1.6	5
41	Molecular motion study of [N(CH3)4]2Zn1–xCux Cl4 (x = 0, 0.01, 0.1, 1) mixed crystals by1H NMR relaxation. Physica Status Solidi (B): Basic Research, 2008, 245, 182-187.	1.5	1
42	A study of the electric quadrupole Raman processes of the protonâ€conducting KHSeO ₄ and KDSeO ₄ single crystals using ¹ H, ² H and ³⁹ K NMR. Physica Status Solidi (B): Basic Research, 2008, 245, 1641-1646.	1.5	0
43	Impurity effects on Fe―or MgOâ€doped LiNbO ₃ crystals studied by ⁷ Li and ⁹³ Nb NMR relaxation. Physica Status Solidi (B): Basic Research, 2008, 245, 2821-2825.	1.5	3
44	1H and 87Rb nuclear magnetic resonance study of the order–disorder phase transition of RbHSeO4 single crystals. Solid State Nuclear Magnetic Resonance, 2008, 34, 162-166.	2.3	1
45	A study of the phase transitions and structural chemistry of CsH3(SO4)2 and Cs3H(SO4)2 single crystals using H1 and C133s nuclear magnetic resonances. Journal of Applied Physics, 2008, 104, 063502.	2.5	0
46	Dynamics of NaHSeO3 and NaHSeO4 single crystals by observation of 1H and 23Na spin-lattice relaxation. Solid State Nuclear Magnetic Resonance, 2007, 31, 124-130.	2.3	4
47	Ferroelastic to paraelastic phase transition of K3H(SeO4)2 and Rb3H(SeO4)2 single crystals studied by nuclear magnetic resonance and external stress. Physica Status Solidi (B): Basic Research, 2007, 244, 775-782.	1.5	0

M and 1H NMR, ionic motions and phase transitions in proton conducting MHSO4 (M = K, Rb, Cs, and) Tj ETQq0 0 QrgBT /Ovgrlock 10 T