
Jaehan Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2751609/publications.pdf Version: 2024-02-01

IAEHAN LUNC

#	Article	IF	CITATIONS
1	Low ost Copper Zinc Tin Sulfide Counter Electrodes for Highâ€Efficiency Dye‧ensitized Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 11739-11742.	13.8	410
2	1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science, 2016, 353, 1268-1272.	12.6	316
3	Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs. Advanced Materials, 2019, 31, e1901602.	21.0	119
4	Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy, 2015, 12, 314-321.	16.0	108
5	Hairy Uniform Permanently Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties. Journal of the American Chemical Society, 2017, 139, 12956-12967.	13.7	107
6	Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1391-E1400.	7.1	106
7	Graphene-based transparent flexible electrodes for polymer solar cells. Journal of Materials Chemistry, 2012, 22, 24254.	6.7	103
8	A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish. Science Advances, 2015, 1, e1500025.	10.3	69
9	Precisely Sizeâ€Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Starâ€Like Block Copolymers. Small, 2016, 12, 6714-6723.	10.0	68
10	Research Progress on Conducting Polymer-Based Biomedical Applications. Applied Sciences (Switzerland), 2019, 9, 1070.	2.5	51
11	Core/Alloyed-Shell Quantum Dot Robust Solid Films with High Optical Gains. ACS Photonics, 2016, 3, 647-658.	6.6	45
12	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie - International Edition, 2016, 55, 5071-5075.	13.8	42
13	Semiconducting Conjugated Polymer–Inorganic Tetrapod Nanocomposites. Langmuir, 2013, 29, 8086-8092.	3.5	38
14	Controlled Self-Assembly of Conjugated Polymers via a Solvent Vapor Pre-Treatment for Use in Organic Field-Effect Transistors. Polymers, 2019, 11, 332.	4.5	36
15	Ab Initio Simulation of Charge Transfer at the Semiconductor Quantum Dot/TiO ₂ Interface in Quantum Dot‧ensitized Solar Cells. Particle and Particle Systems Characterization, 2015, 32, 80-90.	2.3	33
16	Robust, Uniform, and Highly Emissive Quantum Dot–Polymer Films and Patterns Using Thiol–Ene Chemistry. ACS Applied Materials & Interfaces, 2017, 9, 17435-17448.	8.0	32
17	Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point. Nature Communications, 2019, 10, 561.	12.8	32
18	Organicâ€inorganic nanocomposites composed of conjugated polymers and semiconductor nanocrystals for photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1641-1660.	2.1	28

Jaehan Jung

#	Article	IF	CITATIONS
19	Largeâ€Area Multicolor Emissive Patterns of Quantum Dot–Polymer Films via Targeted Recovery of Emission Signature. Advanced Optical Materials, 2016, 4, 608-619.	7.3	27
20	Solvent Additive-Assisted Anisotropic Assembly and Enhanced Charge Transport of π-Conjugated Polymer Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 18131-18140.	8.0	26
21	In Batteria Electrochemical Polymerization to Form a Protective Conducting Layer on Se/C Cathodes for Highâ€Performance Li–Se Batteries. Advanced Functional Materials, 2020, 30, 2000028.	14.9	25
22	Large cale Robust Quantum Dot Microdisk Lasers with Controlled High Quality Cavity Modes. Advanced Optical Materials, 2017, 5, 1700011.	7.3	21
23	Enhancement of optical gain characteristics of quantum dot films by optimization of organic ligands. Journal of Materials Chemistry C, 2016, 4, 10069-10081.	5.5	19
24	Hybrid Polymer/Metal Oxide Thin Films for High Performance, Flexible Transistors. Micromachines, 2020, 11, 264.	2.9	18
25	Lignin-Based Materials for Sustainable Rechargeable Batteries. Polymers, 2022, 14, 673.	4.5	16
26	Semiconducting organic–inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods. Nanoscale, 2016, 8, 8887-8898.	5.6	15
27	High-Resolution Quantum Dot Photopatterning via Interference Lithography Assisted Microstamping. Journal of Physical Chemistry C, 2017, 121, 13370-13380.	3.1	14
28	Interface Engineering Strategies for Fabricating Nanocrystal-Based Organic–Inorganic Nanocomposites. Applied Sciences (Switzerland), 2018, 8, 1376.	2.5	14
29	Large-Scale Alignment of Polymer Semiconductor Nanowires for Efficient Charge Transport via Controlled Evaporation of Confined Fluids. ACS Applied Materials & Interfaces, 2019, 11, 1135-1142.	8.0	14
30	Control of Whispering Gallery Modes and PT-Symmetry Breaking in Colloidal Quantum Dot Microdisk Lasers with Engineered Notches. Nano Letters, 2019, 19, 6049-6057.	9.1	13
31	Spatially Ordered Poly(3â€hexylthiophene) Fibril Nanostructures via Controlled Evaporative Selfâ€Assembly. Advanced Materials Technologies, 2019, 4, 1800554.	5.8	12
32	Self-assembly of a conjugated triblock copolymer at the air–water interface. Soft Matter, 2013, 9, 8050.	2.7	11
33	Continuous crafting of uniform colloidal nanocrystals using an inert-gas-driven microflow reactor. Nanoscale, 2015, 7, 9731-9737.	5.6	10
34	Decay-to-Recovery Behavior and on–off Recovery of Photoluminescence Intensity from Core/Shell Quantum Dots. ACS Photonics, 2017, 4, 1691-1704.	6.6	10
35	Characterization of Copper–Graphite Composites Fabricated via Electrochemical Deposition and Spark Plasma Sintering. Applied Sciences (Switzerland), 2019, 9, 2853.	2.5	9
36	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie, 2016, 128, 5155-5159.	2.0	8

Jaehan Jung

#	Article	IF	CITATIONS
37	Programmed Emission Transformations: Negativeâ€ŧoâ€Positive Patterning Using the Decayâ€ŧoâ€Recovery Behavior of Quantum Dots. Advanced Optical Materials, 2017, 5, 1600509.	7.3	8
38	Intimate organic–inorganic nanocomposites via rationally designed conjugated polymer-grafted precursors. Nanoscale, 2016, 8, 16520-16527.	5.6	6
39	Dewetting-Induced Photoluminescent Enhancement of Poly(lauryl methacrylate)/Quantum Dot Thin Films. Langmuir, 2017, 33, 14325-14331.	3.5	6
40	Cover Picture: Lowâ€Cost Copper Zinc Tin Sulfide Counter Electrodes for Highâ€Efficiency Dyeâ€Sensitized Solar Cells (Angew. Chem. Int. Ed. 49/2011). Angewandte Chemie - International Edition, 2011, 50, 11541-11541.	13.8	5
41	Spontaneous capillary breakup of suspended gradient polymer stripes into spatially ordered dot arrays. Applied Surface Science, 2019, 475, 1003-1009.	6.1	5
42	Preparation of anisotropic CdSe-P3HT core-shell nanorods using directly synthesized Br-functionalized CdSe nanorods. Surface and Coatings Technology, 2019, 362, 84-89.	4.8	2
43	Spectral and directional properties of elliptical quantum-dot microlasers. Journal of Photonics for Energy, 2018, 8, 1.	1.3	2
44	Synthesis of Organic–Inorganic Hybrid Nanocomposites via a Simple Two-Phase Ligands Exchange. Science of Advanced Materials, 2020, 12, 326-332.	0.7	2
45	Stokes-shift engineered CdSe/CdS/Cd1-xZnxSe1-ySy nanoplatelets with tunable emission wavelength. Thin Solid Films, 2022, 750, 139203.	1.8	2
46	Controlled self-assembly of polymer semiconductors in solution using a solvent-vapor approach. Modern Physics Letters B, 2019, 33, 1940038.	1.9	1
47	Continuous manufacturing of 3D patterned hybrid film via a roll-to-roll process with UV curing. Modern Physics Letters B, 2020, 34, 2040039.	1.9	1
48	Effect of a pre-deposited Ni layer on the hydrogen evolution performance of an electroplated Ni–P/CFP composite catalyst in acidic media. Functional Composites and Structures, 2021, 3, 035001.	3.4	1
49	Innenrücktitelbild: An Unconventional Route to Monodisperse and Intimately Contacted Semiconducting Organic-Inorganic Nanocomposites (Angew. Chem. 15/2015). Angewandte Chemie, 2015, 127, 4761-4761.	2.0	0
50	Preparation of organic-inorganic nanocomposites using directly synthesized Br-functionalized nanocrystals. Applied Surface Science, 2019, 475, 695-699.	6.1	0
51	In Batteria Polyaniline Coating: In Batteria Electrochemical Polymerization to Form a Protective Conducting Layer on Se/C Cathodes for Highâ€Performance Li–Se Batteries (Adv. Funct. Mater. 19/2020). Advanced Functional Materials, 2020, 30, 2070124.	14.9	0
52	Synthesis and Characterization of Semiconducting Conjugated Polymer-Nanowire Nanocomposites. Science of Advanced Materials, 2013, 5, 727-732.	0.7	0
53	One-pot synthesis of P3HT–CdE (E=S, Se, Te) nanocomposites using conjugated polymer-grafted precursors. Functional Composites and Structures, 2020, 2, 04LT01.	3.4	0
54	Facile synthesis of Cd1-xZnxSe1-ySy/CdSe/Cd1-xZnxSe1-ySy nanoplatelets with precisely controlled emission wavelength. Thin Solid Films, 2022, 751, 139218.	1.8	0