Anton W Bosman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2751532/publications.pdf Version: 2024-02-01

ANTON W ROSMAN

#	Article	IF	CITATIONS
1	Processing of Selfâ€Healing Polymers for Soft Robotics. Advanced Materials, 2022, 34, e2104798.	11.1	80
2	Supramolecular polymer materials bring restorative heart valve therapy to patients. Materials Today, 2022, 52, 175-187.	8.3	18
3	Marker-Independent Monitoring of in vitro and in vivo Degradation of Supramolecular Polymers Applied in Cardiovascular in situ Tissue Engineering. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	5
4	The inâ€vitro biocompatibility of ureidoâ€pyrimidinone compounds and polymer degradation products. Journal of Polymer Science, 2021, 59, 1267-1277.	2.0	10
5	A review on self-healing polymers for soft robotics. Materials Today, 2021, 47, 187-205.	8.3	150
6	Distinct Effects of Heparin and Interleukinâ€4 Functionalization on Macrophage Polarization and In Situ Arterial Tissue Regeneration Using Resorbable Supramolecular Vascular Grafts in Rats. Advanced Healthcare Materials, 2021, 10, e2101103.	3.9	11
7	Supramolecular Self-Healing Sensor Fiber Composites for Damage Detection in Piezoresistive Electronic Skin for Soft Robots. Polymers, 2021, 13, 2983.	2.0	12
8	Soft Self-Healing Fluidic Tactile Sensors with Damage Detection and Localization Abilities. Sensors, 2021, 21, 8284.	2.1	7
9	Multi-component supramolecular fibers with elastomeric properties and controlled drug release. Biomaterials Science, 2020, 8, 163-173.	2.6	13
10	InÂSitu Remodeling Overrules Bioinspired Scaffold Architecture of Supramolecular Elastomeric Tissue-Engineered Heart Valves. JACC Basic To Translational Science, 2020, 5, 1187-1206.	1.9	38
11	Functional supramolecular bioactivated electrospun mesh improves tissue ingrowth in experimental abdominal wall reconstruction in rats. Acta Biomaterialia, 2020, 106, 82-91.	4.1	33
12	In vitro simulation of in vivo degradation and cyclic loading of novel degradable electrospun meshes for prolapse repair. Polymer Testing, 2019, 78, 105957.	2.3	8
13	Biomechanical Behaviour and Biocompatibility of Ureidopyrimidinone-Polycarbonate Electrospun and Polypropylene Meshes in a Hernia Repair in Rabbits. Materials, 2019, 12, 1174.	1.3	10
14	Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers. Acta Biomaterialia, 2018, 71, 247-260.	4.1	65
15	Experimental reconstruction of an abdominal wall defect with electrospun polycaprolactone-ureidopyrimidinone mesh conserves compliance yet may have insufficient strength. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 431-441.	1.5	19
16	Ureidopyrimidinone-polycaprolactone electrospun MESH reinforce rabbit abdominal wall incisional hernia maintains physiological compliance. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2017, 211, 206.	0.5	1
17	Novel Supramolecular Block Copolymer of Isotactic Polypropylene and Ethylene- <i>co</i> -propylene Connected by Complementary Quadruple Hydrogen Bonding System. Macromolecules, 2017, 50, 5687-5694.	2.2	14
18	Toughening and healing of continuous fibre reinforced composites by supramolecular polymers. Composites Science and Technology, 2016, 128, 84-93.	3.8	43

ANTON W BOSMAN

#	Article	IF	CITATIONS
19	Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides. Biomaterials, 2016, 76, 187-195.	5.7	95
20	Supramolecular polypropylene with self-complementary hydrogen bonding system. Polymer, 2016, 87, 308-315.	1.8	23
21	Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways. Acta Biomaterialia, 2015, 27, 21-31.	4.1	68
22	Convenient formulation and application of a supramolecular ureido-pyrimidinone modified poly(ethylene glycol) carrier for intrarenal growth factor delivery. European Polymer Journal, 2015, 72, 484-493.	2.6	6
23	Hierarchical Formation of Supramolecular Transient Networks in Water: A Modular Injectable Delivery System. Advanced Materials, 2012, 24, 2703-2709.	11.1	247
24	Development and in-vivo characterization of supramolecular hydrogels for intrarenal drug delivery. Biomaterials, 2012, 33, 5144-5155.	5.7	78
25	Selfâ€Healing Supramolecular Polymers In Action. Macromolecular Chemistry and Physics, 2012, 213, 234-242.	1.1	193
26	Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells. Biomaterials, 2011, 32, 723-733.	5.7	88
27	TOF-Secondary Ion Mass Spectrometry Imaging of Polymeric Scaffolds with Surrounding Tissue after in Vivo Implantation. Analytical Chemistry, 2010, 82, 4337-4343.	3.2	34
28	Selfâ€assembly and morphology of polydimethylsiloxane supramolecular thermoplastic elastomers. Journal of Polymer Science Part A, 2008, 46, 3877-3885.	2.5	117
29	Thermoplastic Elastomers Based on Strong and Well-Defined Hydrogen-Bonding Interactions. Macromolecules, 2008, 41, 5703-5708.	2.2	85
30	Chemical and biological properties of supramolecular polymer systems based on oligocaprolactones. Biomaterials, 2006, 27, 5490-5501.	5.7	94
31	Supramolecular Polymers in Action. , 2005, , .		1
32	Supramolecular polymers at work. Materials Today, 2004, 7, 34-39.	8.3	238
33	Crowned Dendrimers: pH-Responsive Pseudorotaxane Formation ChemInform, 2003, 34, no.	0.1	0
34	A Modular Approach toward Functionalized Three-Dimensional Macromolecules:  From Synthetic Concepts to Practical Applications. Journal of the American Chemical Society, 2003, 125, 715-728.	6.6	313
35	Crowned Dendrimers:  pH-Responsive Pseudorotaxane Formation. Journal of Organic Chemistry, 2003, 68, 2385-2389.	1.7	72
36	Relaxivity Studies on Dinitroxide and Polynitroxyl Functionalized Dendrimers:Â Effect of Electron Exchange and Structure on Paramagnetic Relaxation Enhancement. Journal of Physical Chemistry A, 2003, 107, 8467-8475.	1.1	46

ANTON W BOSMAN

#	Article	IF	CITATIONS
37	Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization. Journal of Polymer Science Part A, 2002, 40, 1309-1320.	2.5	191
38	New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chemical Reviews, 2001, 101, 3661-3688.	23.0	3,724
39	Intramolecular segregation in polymers and macromolecules studied by low-energy ion scattering. Surface Science, 2001, 482-485, 1235-1240.	0.8	6
40	High-Throughput Synthesis of Nanoscale Materials:Â Structural Optimization of Functionalized One-Step Star Polymers. Journal of the American Chemical Society, 2001, 123, 6461-6462.	6.6	178
41	A practical approach to the living polymerization of functionalized monomers: application to block copolymers and 3-dimensional macromolecular architectures. Macromolecular Symposia, 2001, 174, 85-92.	0.4	25
42	The Dynamics of Electronic Energy Transfer in Novel Multiporphyrin Functionalized Dendrimers:Â A Time-Resolved Fluorescence Anisotropy Study. Journal of Physical Chemistry B, 2000, 104, 2596-2606.	1.2	203
43	A Multi-O2 Complex Derived from a Copper(I) Dendrimer. Chemistry - A European Journal, 1999, 5, 65-69.	1.7	39
44	Templated assembly of a molecular capsule. Chemical Communications, 1998, , 11-12.	2.2	65
45	Concerning the Localization of End Groups in Dendrimers. Journal of the American Chemical Society, 1998, 120, 8547-8548.	6.6	71
46	Wellâ€Ðefined Metallodendrimers by Siteâ€Specific Complexation. Chemische Berichte, 1997, 130, 725-728.	0.2	61
47	Supramolecular Structure, Physical Properties, and Langmuirâ€Blodgett Film Formation of an Optically Active Liquidâ€Crystalline Phthalocyanine. Chemistry - A European Journal, 1995, 1, 171-182.	1.7	103
48	Evidence of a chiral superstructure in the discotic mesophase of an optically active phthalocyanine. Journal of the Chemical Society Chemical Communications, 1993, , 1120.	2.0	31