
William Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/27512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Construction and Building Materials, 2019, 206, 84-96.	7.2	88
2	edxia: Microstructure characterisation from quantified SEM-EDS hypermaps. Cement and Concrete Research, 2021, 141, 106327.	11.0	82
3	Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials. Cement and Concrete Research, 2015, 67, 271-285.	11.0	80
4	Automated coupling of NanoIndentation and Quantitative Energy-Dispersive Spectroscopy (NI-QEDS): A comprehensive method to disclose the micro-chemo-mechanical properties of cement pastes. Cement and Concrete Research, 2018, 103, 49-65.	11.0	75
5	Unveiling micro-chemo-mechanical properties of C–(A)–S–H and other phases in blended-cement pastes. Cement and Concrete Research, 2018, 107, 317-336.	11.0	54
6	Insights on chemical and physical chloride binding in blended cement pastes. Cement and Concrete Research, 2022, 156, 106747.	11.0	45
7	Quantifying glass powder reaction in blended-cement pastes with the Rietveld-PONKCS method. Cement and Concrete Research, 2020, 130, 105999.	11.0	41
8	Investigating the pozzolanic reaction of post-consumption glass powder and the role of portlandite in the formation of sodium-rich C-S-H. Cement and Concrete Research, 2019, 123, 105790.	11.0	36
9	Hydration and microstructure of glass powder cement pastes – A multi-technique investigation. Cement and Concrete Research, 2022, 151, 106610.	11.0	32
10	Chloride sorption by C-S-H quantified by SEM-EDX image analysis. Cement and Concrete Research, 2022, 152, 106656.	11.0	25
11	Micro-chemo-mechanical features of ultra-high performance glass concrete (UHPGC). Theoretical and Applied Fracture Mechanics, 2019, 104, 102373.	4.7	23
12	Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers. Cement and Concrete Research, 2014, 55, 35-48.	11.0	18
13	Micro-Chemo-Mechanical Characterization of a Limestone-Calcinated-Clay Cement Paste by Statistical Nanoindentation and Quantitative SEM-EDS. RILEM Bookseries, 2018, , 494-499.	0.4	3