Antonio Trabucco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2750758/publications.pdf

Version: 2024-02-01

41 papers 3,216 citations

293460 24 h-index 312153 41 g-index

45 all docs

45 docs citations

45 times ranked

6838 citing authors

#	Article	IF	CITATIONS
1	Performances of climatic indicators from seasonal forecasts for ecosystem management: The case of Central Europe and the Mediterranean. Agricultural and Forest Meteorology, 2022, 319, 108921.	1.9	2
2	Global carbon sequestration potential of agroforestry and increased tree cover on agricultural land. Circular Agricultural Systems, 2022, 2, 1-10.	0.5	9
3	Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Scientific Data, 2022, 9, .	2.4	151
4	A kingdom in decline: Holocene range contraction of the lion (<i>Panthera leo</i>) modelled with global environmental stratification. PeerJ, 2021, 9, e10504.	0.9	3
5	A modelling platform for climate change impact on local and regional crop water requirements. Agricultural Water Management, 2021, 255, 107005.	2.4	27
6	Engaging Transformation: Using Seasonal Rounds to Anticipate Climate Change. Human Ecology, 2021, 49, 509-523.	0.7	11
7	Modeling high-resolution climate change impacts on wheat and maize in Italy. Climate Risk Management, 2021, 33, 100339.	1.6	13
8	A height-wood-seed axis which is preserved across climatic regions explains tree dominance in European forest communities. Plant Ecology, 2019, 220, 467-480.	0.7	4
9	Predicting range shifts of Asian elephants under global change. Diversity and Distributions, 2019, 25, 822-838.	1.9	62
10	Anticipating Climatic Variability: The Potential of Ecological Calendars. Human Ecology, 2018, 46, 249-257.	0.7	35
11	Tree seedling vitality improves with functional diversity in a Mediterranean common garden experiment. Forest Ecology and Management, 2018, 409, 614-633.	1.4	10
12	Modeling ozone uptake by urban and peri-urban forest: a case study in the Metropolitan City of Rome. Environmental Science and Pollution Research, 2018, 25, 8190-8205.	2.7	9
13	Random subset feature selection for ecological niche models of wildfire activity in Western North America. Ecological Modelling, 2018, 383, 52-68.	1.2	18
14	Multi-Stakeholder Development of a Serious Game to Explore the Water-Energy-Food-Land-Climate Nexus: The SIM4NEXUS Approach. Water (Switzerland), 2018, 10, 139.	1.2	69
15	Assessment of Irrigated Agriculture Vulnerability under Climate Change in Southern Italy. Water (Switzerland), 2018, 10, 209.	1.2	25
16	Environmental filtering drives community specific leaf area in Spanish forests and predicts relevant changes under future climatic conditions. Forest Ecology and Management, 2017, 405, 1-8.	1.4	4
17	A risk assessment framework for irrigated agriculture under climate change. Advances in Water Resources, 2017, 110, 562-578.	1.7	55
18	Coexistence trend contingent to Mediterranean oaks with different leaf habits. Ecology and Evolution, 2017, 7, 3006-3015.	0.8	5

#	Article	IF	CITATIONS
19	Understanding global climate change scenarios through bioclimate stratification. Environmental Research Letters, 2017, 12, 084002.	2.2	7
20	Specific leaf area and hydraulic traits explain niche segregation along an aridity gradient in Mediterranean woody species. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21, 23-30.	1.1	47
21	The future distribution of the savannah biome: model-based and biogeographic contingency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150311.	1.8	22
22	Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 2016, 6, 29987.	1.6	350
23	Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia. Science of the Total Environment, 2016, 543, 1028-1038.	3.9	59
24	Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China. Biological Conservation, 2015, 184, 335-345.	1.9	70
25	The economics and greenhouse gas balance of land conversion to <i><scp>J</scp>atropha</i> : the case of <scp>T</scp> anzania. GCB Bioenergy, 2015, 7, 302-315.	2,5	4
26	Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth. PLoS ONE, 2014, 9, e92337.	1.1	50
27	Environmental stratification to model climate change impacts on biodiversity and rubber production in Xishuangbanna, Yunnan, China. Biological Conservation, 2014, 170, 264-273.	1.9	79
28	Projected climate change impacts on spatial distribution of bioclimatic zones and ecoregions within the Kailash Sacred Landscape of China, India, Nepal. Climatic Change, 2014, 125, 445-460.	1.7	62
29	Potential, realised, future distribution and environmental suitability for Pterocarpus angolensis DC in southern Africa. Forest Ecology and Management, 2014, 315, 211-226.	1.4	32
30	Ecological traits of Mediterranean tree species as a basis for modelling forest dynamics in the Taurus mountains, Turkey. Ecological Modelling, 2014, 286, 53-65.	1.2	13
31	Environmental stratifications as the basis for national, European and global ecological monitoring. Ecological Indicators, 2013, 33, 26-35.	2.6	66
32	Global greenhouse gas implications of land conversion to biofuel crop cultivation in arid and semi-arid lands â€" Lessons learned from Jatropha. Journal of Arid Environments, 2013, 98, 135-145.	1.2	34
33	A highâ€resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography, 2013, 22, 630-638.	2.7	245
34	Does energy dissipation increase with ecosystem succession? Testing the ecosystem exergy theory combining theoretical simulations and thermal remote sensing observations. Ecological Modelling, 2011, 222, 3917-3941.	1.2	31
35	Towards domestication of <i>Jatropha curcas </i> . Biofuels, 2010, 1, 91-107.	1.4	159
36	Jatropha: From global hype to local opportunity. Journal of Arid Environments, 2010, 74, 164-165.	1.2	136

3

Antonio Trabucco

#	Article	IF	CITATIONS
37	Global mapping of <i>Jatropha curcas</i> yield based on response of fitness to present and future climate. GCB Bioenergy, 2010, 2, 139-151.	2.5	54
38	Climatic growing conditions of Jatropha curcas L Biomass and Bioenergy, 2009, 33, 1481-1485.	2.9	145
39	Land Area Eligible for Afforestation and Reforestation within the Clean Development Mechanism: A Global Analysis of the Impact of Forest Definition. Mitigation and Adaptation Strategies for Global Change, 2008, 13, 219-239.	1.0	21
40	Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems and Environment, 2008, 126, 67-80.	2.5	845
41	Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies. Agriculture, Ecosystems and Environment, 2008, 126, 81-97.	2.5	172