Shulin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2749996/publications.pdf

Version: 2024-02-01

263 papers 14,465 citations

70 h-index

11608

28224 105 g-index

268 all docs

268 docs citations

times ranked

268

13801 citing authors

#	Article	IF	CITATIONS
1	Progress toward a bicarbonate-based microalgae production system. Trends in Biotechnology, 2022, 40, 180-193.	4.9	37
2	Systematic evaluation of fractionation and valorization of lignocellulose via two-stage hydrothermal liquefaction. Fuel, 2022, 310, 122358.	3.4	10
3	Biorefinery Processing of Waste to Supply Cost-Effective and Sustainable Inputs for Two-Stage Microalgal Cultivation. Applied Sciences (Switzerland), 2022, 12, 1485.	1.3	1
4	A kinetic model of heterotrophic and mixotrophic cultivation of the potential biofuel organism microalgae Chlorella sorokiniana. Algal Research, 2022, 64, 102701.	2.4	14
5	Re-Programing Glucose Catabolism in the Microalga Chlorella sorokiniana under Light Condition. Biomolecules, 2022, 12, 939.	1.8	4
6	Recovering Valuable Bioactive Compounds from Potato Peels with Sequential Hydrothermal Extraction. Waste and Biomass Valorization, 2021, 12, 1465-1481.	1.8	29
7	Hydrothermal liquefaction conversion of lignocelluloses with enhanced fungal pretreatment. Industrial Crops and Products, 2021, 162, 113268.	2.5	21
8	Challenges and Potential in Increasing Lutein Content in Microalgae. Microorganisms, 2021, 9, 1068.	1.6	28
9	Converting lignin into longâ€chain fatty acids with the electroâ€Fenton reaction. GCB Bioenergy, 2021, 13, 1290-1302.	2.5	12
10	A comprehensive study of the promoting effect of manganese on white rot fungal treatment for enzymatic hydrolysis of woody and grass lignocellulose. Biotechnology for Biofuels, 2021, 14, 176.	6.2	10
11	Metabolic Engineering of Non-carotenoid-Producing Yeast Yarrowia lipolytica for the Biosynthesis of Zeaxanthin. Frontiers in Microbiology, 2021, 12, 699235.	1.5	11
12	Enhancement of linoleic acid content stimulates astaxanthin esterification in Coelastrum sp Bioresource Technology, 2020, 300, 122649.	4.8	16
13	Comparative techno-economic analysis of algal biofuel production via hydrothermal liquefaction: One stage versus two stages. Applied Energy, 2020, 259, 114115.	5.1	40
14	Mechanistic studies of milled and Kraft lignin oxidation by radical species. Green Chemistry, 2020, 22, 1182-1197.	4.6	41
15	Transcriptome analysis of Haematococcus pluvialis of multiple defensive systems against nitrogen starvation. Enzyme and Microbial Technology, 2020, 134, 109487.	1.6	31
16	Delignification and Enzyme-Diffusion Kinetics of Radical Systems Treating Wheat Straw. Industrial & Engineering Chemistry Research, 2020, 59, 20656-20666.	1.8	1
17	Recycling of Nutrients from Dairy Wastewater by Extremophilic Microalgae with High Ammonia Tolerance. Environmental Science & Technology, 2020, 54, 15366-15375.	4.6	41
18	Electro-Fenton Based Technique to Enhance Cell Harvest and Lipid Extraction from Microalgae. Energies, 2020, 13, 3813.	1.6	9

#	Article	IF	Citations
19	Metabolic Engineering of Oleaginous Yeast Yarrowia lipolytica for Overproduction of Fatty Acids. Frontiers in Microbiology, 2020, 11, 1717.	1.5	20
20	Expanding Toolbox for Genes Expression of <i>Yarrowia lipolytica</i> to Include Novel Inducible, Repressible, and Hybrid Promoters. ACS Synthetic Biology, 2020, 9, 2208-2213.	1.9	28
21	Effects of increasing organic loading rates on reactor performance and the methanogenic community in a new pilot upflow solid reactor for continuously processing food waste. Renewable Energy, 2020, 153, 420-429.	4.3	5
22	Effects of Methanol on Carotenoids as Well as Biomass and Fatty Acid Biosynthesis in <i>Schizochytrium limacinum</i> B4D1. Applied and Environmental Microbiology, 2019, 85, .	1.4	41
23	Lysine Mutation of the Claw-Arm-Like Loop Accelerates Catalysis by Cellobiohydrolases. Journal of the American Chemical Society, 2019, 141, 14451-14459.	6.6	17
24	Facilitated methanogenesis involved in anaerobic digestion of dairy manure by soil. Journal of Cleaner Production, 2019, 236, 117640.	4.6	4
25	Growth characteristics and photofermentative biohydrogen production potential of purple non sulfur bacteria from sugar cane bagasse. Fuel, 2019, 255, 115805.	3.4	34
26	Effects of gluconate on biomass improvement and light stress tolerance of Haematococcus pluvialis in mixotrophic culture. Algal Research, 2019, 43, 101647.	2.4	18
27	Multilevel heuristic LED regime for stimulating lipid and bioproducts biosynthesis in Haematococcus pluvialis under mixotrophic conditions. Bioresource Technology, 2019, 288, 121525.	4.8	24
28	Recovery of Polyphenols from Grape Pomace Using Polyethylene Glycol (PEG)-Grafted Silica Particles and PEG-Assisted Cosolvent Elution. Molecules, 2019, 24, 2199.	1.7	7
29	Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae. Renewable and Sustainable Energy Reviews, 2019, 112, 450-460.	8.2	96
30	Effect of reactive oxygen species on biomass structure in different oxidative processes. Industrial Crops and Products, 2019, 137, 484-494.	2.5	32
31	pH shaped kinetic characteristics and microbial community of food waste hydrolysis and acidification. Biochemical Engineering Journal, 2019, 146, 52-59.	1.8	33
32	Closing ammonia loop in efficient biogas production: Recycling ammonia pretreatment of wheat straw. Biosystems Engineering, 2019, 180, 182-190.	1.9	24
33	Regulation and stimulation of photosynthesis of mixotrophically cultured Haematococcus pluvialis by ribose. Algal Research, 2019, 39, 101443.	2.4	21
34	Duckweed (Lemna minor) is a novel natural inducer of cellulase production in Trichoderma reesei. Journal of Bioscience and Bioengineering, 2019, 127, 486-491.	1.1	16
35	Hydrothermal Catalytic Deoxygenation of Fatty Acid and Bio-oil with In Situ H ₂ . ACS Sustainable Chemistry and Engineering, 2018, 6, 4521-4530.	3.2	40
36	Persulfate oxidizing system for biomass pretreatment and process optimization. Biomass and Bioenergy, 2018, 116, 249-258.	2.9	30

#	Article	IF	Citations
37	Neural Network Prediction of Corn Stover Saccharification Based on Its Structural Features. BioMed Research International, 2018, 2018, 1-7.	0.9	3
38	Phospholipase A1-Catalysed Synthesis of Docosahexaenoic Acid-Enriched Phosphatidylcholine in Reverse Micelles System. Applied Biochemistry and Biotechnology, 2017, 182, 1037-1052.	1.4	22
39	Parameterization of a light distribution model for green cell growth of microalgae: Haematococcus pluvialis cultured under red LED lights. Algal Research, 2017, 23, 20-27.	2.4	15
40	Importance of "weak-base―poplar wastes to process performance and methane yield in solid-state anaerobic digestion. Journal of Environmental Management, 2017, 193, 423-429.	3.8	15
41	Advances in modifying lignin structures for largely enhancing high-lignin biomass saccharification. Process Biochemistry, 2017, 57, 175-180.	1.8	7
42	Sequential Hydrothermal Liquefaction characterization and nutrient recovery assessment. Algal Research, 2017, 25, 274-284.	2.4	35
43	Effects of butanol on high value product production in Schizochytrium limacinum B4D1. Enzyme and Microbial Technology, 2017, 102, 9-15.	1.6	39
44	Effects of C5 organic carbon and light on growth and cell activity of Haematococcus pluvialis under mixotrophic conditions. Algal Research, 2017, 21, 227-235.	2.4	44
45	Recycling nutrients from a sequential hydrothermal liquefaction process for microalgae culture. Algal Research, 2017, 27, 311-317.	2.4	34
46	Genome sequence of Talaromyces piceus 9-3 provides insights into lignocellulose degradation. 3 Biotech, 2017, 7, 368.	1.1	6
47	Selection of Schizochytrium limacinum mutants based on butanol tolerance. Electronic Journal of Biotechnology, 2017, 30, 58-63.	1.2	14
48	Simultaneous ammonia stripping and anaerobic digestion for efficient thermophilic conversion of dairy manure at high solids concentration. Energy, 2017, 141, 179-188.	4.5	36
49	UP Finder: A COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction. Metabolic Engineering Communications, 2017, 5, 54-59.	1.9	5
50	Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1. Applied Biochemistry and Biotechnology, 2017, 182, 67-81.	1.4	27
51	From plastics to jet fuel range alkanes via combined catalytic conversions. Fuel, 2017, 188, 28-38.	3.4	52
52	Combinatorial Engineering of Yarrowia lipolytica as a Promising Cell Biorefinery Platform for the de novo Production of Multi-Purpose Long Chain Dicarboxylic Acids. Fermentation, 2017, 3, 40.	1.4	19
53	A novel and simple approach to the good process performance of methane recovery from lignocellulosic biomass alone. Biotechnology for Biofuels, 2016, 9, 115.	6.2	14
54	Preparation of stable microcapsules from disrupted cell of <i><iscp>Haematococcus pluvialis</iscp></i> by spray drying. International Journal of Food Science and Technology, 2016, 51, 1834-1843.	1.3	14

#	Article	IF	Citations
55	Biochemical characterization of a novel feruloyl esterase from Penicillium piceum and its application in biomass bioconversion. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S388-S394.	1.8	12
56	Effect of highly branched hyphal morphology on the enhanced production of cellulase in Trichoderma reesei DES-15. 3 Biotech, 2016, 6, 214.	1.1	18
57	Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chemistry, 2016, 18, 4145-4169.	4.6	362
58	Exploring fatty alcohol-producing capability of Yarrowia lipolytica. Biotechnology for Biofuels, 2016, 9, 107.	6.2	66
59	CAH1 and CAH2 as key enzymes required for high bicarbonate tolerance of a novel microalga Dunaliella salina HTBS. Enzyme and Microbial Technology, 2016, 87-88, 17-23.	1.6	15
60	Solubilization of lignin in copolymer micelles in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503, 1-10.	2.3	7
61	Effect of malate on docosahexaenoic acid production from Schizochytrium sp. B4D1. Electronic Journal of Biotechnology, 2016, 19, 56-60.	1.2	30
62	Engineering of an L-arabinose metabolic pathway in <i>Rhodococcus jostii</i> RHA1 for biofuel production. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1017-1025.	1.4	12
63	Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions. Applied Energy, 2016, 173, 418-430.	5.1	130
64	Optimizing carbon efficiency of jet fuel range alkanes from cellulose co-fed with polyethylene via catalytically combined processes. Bioresource Technology, 2016, 214, 45-54.	4.8	48
65	Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803. Applied Microbiology and Biotechnology, 2016, 100, 6091-6101.	1.7	24
66	Consolidated bioprocessing of microalgal biomass to carboxylates by a mixed culture of cow rumen bacteria using anaerobic sequencing batch reactor (ASBR). Bioresource Technology, 2016, 222, 517-522.	4.8	12
67	Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresource Technology, 2016, 220, 233-238.	4.8	149
68	Engineering levoglucosan metabolic pathway in <i>Rhodococcus jostii</i> RHA1 for lipid production. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1551-1560.	1.4	32
69	Assessment of photosynthesis regulation in mixotrophically cultured microalga Chlorella sorokiniana. Algal Research, 2016, 19, 30-38.	2.4	44
70	Pretreating cellulases with hydrophobins for improving bioconversion of cellulose: an experimental and computational study. Green Chemistry, 2016, 18, 6666-6674.	4.6	8
71	Effects of extracellular proteome on wheat straw pretreatment during solid-state fermentation of Phlebia radiata ATCC 64658. International Biodeterioration and Biodegradation, 2016, 109, 36-44.	1.9	12
72	Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials. Applied Biochemistry and Biotechnology, 2016, 179, 1129-1142.	1.4	27

#	Article	IF	Citations
73	Development of a catalytically green route from diverse lignocellulosic biomasses to high-density cycloalkanes for jet fuels. Catalysis Science and Technology, 2016, 6, 4210-4220.	2.1	28
74	Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst. Fuel, 2016, 166, 302-308.	3.4	110
75	Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability. Biotechnology for Biofuels, 2015, 8, 194.	6.2	36
76	Protein disulfide isomerase homolog TrPDI2 contributing to cellobiohydrolase production in Trichoderma reesei. Enzyme and Microbial Technology, 2015, 77, 21-28.	1.6	13
77	A ¹³ C CP/MAS-Based Nondegradative Method for Lignin Content Analysis. ACS Sustainable Chemistry and Engineering, 2015, 3, 153-162.	3.2	19
78	Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol. International Journal of Biological Macromolecules, 2015, 75, 58-66.	3.6	160
79	Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresource Technology, 2015, 180, 250-257.	4.8	110
80	Screening of ligninolytic fungi for biological pretreatment of lignocellulosic biomass. Canadian Journal of Microbiology, 2015, 61, 745-752.	0.8	12
81	Simulation of the ozone pretreatment of wheat straw. Bioresource Technology, 2015, 196, 78-87.	4.8	41
82	Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. Journal of Analytical and Applied Pyrolysis, 2015, 115, 149-156.	2.6	102
83	Mitochondria thioredoxin's backup role in oxidative stress resistance in Trichoderma reesei. Microbiological Research, 2015, 171, 32-38.	2.5	8
84	Computer-Assisted Rational Modifications to Improve the Thermostability of \hat{l}^2 -Glucosidase from Penicillium piceum H16. Bioenergy Research, 2015, 8, 1384-1390.	2.2	29
85	Enhanced hydrolysis of Macrocystis pyrifera by integrated hydroxyl radicals and hot water pretreatment. Bioresource Technology, 2015, 179, 490-496.	4.8	21
86	Ammonia recovery from anaerobic digester effluent through direct aeration. Chemical Engineering Journal, 2015, 279, 31-37.	6.6	75
87	Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnology for Biofuels, 2015, 8, 141.	6.2	116
88	Selective esterification to produce microalgal biodiesel and enrich polyunsaturated fatty acid using zeolite as a catalyst. RSC Advances, 2015, 5, 84894-84900.	1.7	18
89	From lignocellulosic biomass to renewable cycloalkanes for jet fuels. Green Chemistry, 2015, 17, 4736-4747.	4.6	61
90	Direct quantification of fatty acids in wet microalgal and yeast biomass via a rapid in situ fatty acid methyl ester derivatization approach. Applied Microbiology and Biotechnology, 2015, 99, 10237-10247.	1.7	28

#	Article	IF	Citations
91	Production of renewable jet fuel range alkanes and aromatics via integrated catalytic processes of intact biomass. Fuel, 2015, 160, 375-385.	3.4	41
92	Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char. Energy Conversion and Management, 2015, 105, 1389-1396.	4.4	91
93	Mutagenesis and evaluation of cellulase properties and cellulose hydrolysis of Talaromyces piceus. World Journal of Microbiology and Biotechnology, 2015, 31, 1811-1819.	1.7	8
94	Investigations on cell disruption of oleaginous microorganisms: Hydrochloric acid digestion is an effective method for lipid extraction. European Journal of Lipid Science and Technology, 2015, 117, 730-737.	1.0	67
95	Characterization of the Interactions between Polyethylene Glycol and Cellulase during the Hydrolysis of Lignocellulose. Bioenergy Research, 2015, 8, 270-278.	2.2	17
96	Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium. Biotechnology for Biofuels, 2014, 7, 161.	6.2	24
97	Induction of D-xylose uptake and expression of NAD(P)H-linked xylose reductase and NADP + -linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana. Biotechnology for Biofuels, 2014, 7, 125.	6.2	8
98	Yarrowia lipolytica as an Oleaginous Cell Factory Platform for Production of Fatty Acid-Based Biofuel and Bioproducts. Frontiers in Energy Research, 2014, 2, .	1.2	93
99	SWAT modeling with uncertainty and cluster analyses of tillage impacts on hydrological processes. Stochastic Environmental Research and Risk Assessment, 2014, 28, 225-238.	1.9	19
100	Isolation, characterization, and validation of oleaginous, multi-trophic, and haloalkaline-tolerant microalgae for two-stage cultivation. Algal Research, 2014, 4, 2-11.	2.4	33
101	Selection of Microalgae and Cyanobacteria Strains for Bicarbonate-Based Integrated Carbon Capture and Algae Production System. Applied Biochemistry and Biotechnology, 2014, 172, 447-457.	1.4	58
102	Improved lipid accumulation by morphology engineering of oleaginous fungus <i>Mortierella isabellina</i> . Biotechnology and Bioengineering, 2014, 111, 1758-1766.	1.7	41
103	Construction of a constitutively expressed homo-fermentative pathway in Lactobacillus brevis. Applied Microbiology and Biotechnology, 2014, 98, 6641-6650.	1.7	11
104	Enhancing Biogas Production from Anaerobically Digested Wheat Straw Through Ammonia Pretreatment. Chinese Journal of Chemical Engineering, 2014, 22, 576-582.	1.7	33
105	Co-utilization of glucose, xylose and cellobiose by the oleaginous yeast Cryptococcus curvatus. Biomass and Bioenergy, 2014, 71, 340-349.	2.9	53
106	Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei. Enzyme and Microbial Technology, 2014, 67, 17-26.	1.6	79
107	Bacterial community in the intestine of the sea urchin <i>Strongylocentrotus intermedius</i> digestion of <i>Macrocystis pyrifera</i> Marine and Freshwater Behaviour and Physiology, 2014, 47, 117-127.	0.4	6
108	How could haloalkaliphilic microorganisms contribute to biotechnology?. Canadian Journal of Microbiology, 2014, 60, 717-727.	0.8	41

#	Article	IF	Citations
109	Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts. RSC Advances, 2014, 4, 10731-10737.	1.7	122
110	Liquid–Liquid Extraction of Biomass Pyrolysis Bio-oil. Energy & Energy & 2014, 28, 1207-1212.	2.5	84
111	Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor. Fuel, 2014, 129, 78-85.	3.4	93
112	Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresource Technology, 2014, 161, 423-430.	4.8	136
113	Effect of earlier unfolded protein response and efficient protein disposal system on cellulase production in Rut C30. World Journal of Microbiology and Biotechnology, 2014, 30, 2587-2595.	1.7	14
114	Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass and Bioenergy, 2014, 66, 204-213.	2.9	196
115	Effect of lignocellulose degradation products on microbial biomass and lipid production by the oleaginous yeast Cryptococcus curvatus. Process Biochemistry, 2014, 49, 457-465.	1.8	60
116	Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment. Bioresource Technology, 2014, 162, 243-249.	4.8	60
117	Sequential hydrothermal fractionation of yeast Cryptococcus curvatus biomass. Bioresource Technology, 2014, 164, 106-112.	4.8	39
118	Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation. Journal of Biotechnology, 2013, 166, 192-197.	1.9	62
119	Bicarbonate-based Integrated Carbon Capture and Algae Production System with alkalihalophilic cyanobacterium. Bioresource Technology, 2013, 133, 513-521.	4.8	94
120	Purification and characterization of a new \hat{l}^2 -glucosidase from Penicillium piceum and its application in enzymatic degradation of delignified corn stover. Bioresource Technology, 2013, 147, 658-661.	4.8	42
121	Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure. Bioresource Technology, 2013, 131, 6-12.	4.8	48
122	Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosystems Engineering, 2013, 116, 420-426.	1.9	121
123	Two-step in situ biodiesel production from microalgae with high free fatty acid content. Bioresource Technology, 2013, 136, 8-15.	4.8	124
124	Characterization of lignin derived from water-only flowthrough pretreatment of Miscanthus. Industrial Crops and Products, 2013, 50, 391-399.	2.5	45
125	Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Bioresource Technology, 2013, 128, 385-391.	4.8	80
126	Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. Journal of Biotechnology, 2013, 168, 470-477.	1.9	80

#	Article	IF	Citations
127	Photo-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw. Biotechnology for Biofuels, 2013, 6, 144.	6.2	36
128	Evaluation of a soil greenhouse gas emission model based on Bayesian inference and MCMC: Model uncertainty. Ecological Modelling, 2013, 253, 97-106.	1.2	17
129	Tetramethylammonium Hydroxide (TMAH) Thermochemolysis for Probing in Situ Softwood Lignin Modification in Each Gut Segment of the Termite. Journal of Agricultural and Food Chemistry, 2013, 61, 1299-1308.	2.4	12
130	Aromatic hydrocarbons production from packed-bed catalysis coupled with microwave pyrolysis of Douglas fir sawdust pellets. RSC Advances, 2013, 3, 14609.	1.7	28
131	Varied lignin disruption mechanisms for different biomass substrates in lower termite. Renewable Energy, 2013, 50, 1060-1064.	4.3	12
132	Multiphase modeling of settling and suspension in anaerobic digester. Applied Energy, 2013, 111, 28-39.	5.1	29
133	Performances of anaerobic co-digestion of fruit & to egetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresource Technology, 2013, 144, 80-85.	4.8	290
134	Evaluation of a soil greenhouse gas emission model based on Bayesian inference and MCMC: Parameter identifiability and equifinality. Ecological Modelling, 2013, 253, 107-116.	1.2	6
135	Microbial lipid production from xylose by Mortierella isabellina. Bioresource Technology, 2013, 133, 315-321.	4.8	65
136	High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresource Technology, 2013, 131, 60-67.	4.8	120
137	The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating. Bioresource Technology, 2013, 135, 659-664.	4.8	128
138	Structural Modification of Lignin and Characterization of Pretreated Wheat Straw by Ozonation. Journal of Agricultural and Food Chemistry, 2013, 61, 3916-3925.	2.4	82
139	High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Applied Energy, 2013, 108, 281-287.	5.1	112
140	Isolation and Characterization of a Marine Microalga for Biofuel Production with Astaxanthin as a Co-Product. Energies, 2013, 6, 2759-2772.	1.6	34
141	An α-glucan isolated as a co-product of biofuel by hydrothermal liquefaction of Chlorella sorokiniana biomass. Algal Research, 2013, 2, 230-236.	2.4	28
142	Thermal decomposition of lignin structural modification in termite digested softwood (II). Fuel, 2013, 104, 781-787.	3.4	14
143	Quantification of Wheat Straw Lignin Structure by Comprehensive NMR Analysis. Journal of Agricultural and Food Chemistry, 2013, 61, 10848-10857.	2.4	147
144	A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresource Technology, 2013, 134, 391-395.	4.8	143

#	Article	IF	Citations
145	Enhance volatile fatty acid (VFA) and bio-methane productivity by pretreatment of lawn grass., 2013,,.		О
146	Medium-Temperature Pyrolysis of Corn Stover Improved by Biopretreatment with White-rot Fungi. BioResources, 2013, 8 , .	0.5	2
147	Psychrophilic anaerobic sequencing batch reactor with biofilm supported by solids from dairy manure. , 2013, , .		0
148	Py-GC/MS as a Powerful and Rapid Tool for Determining Lignin Compositional and Structural Changes in Biological Processes. Current Analytical Chemistry, 2013, 9, 335-351.	0.6	14
149	Alkalitalea saponilacus gen. nov., sp. nov., an obligately anaerobic, alkaliphilic, xylanolytic bacterium from a meromictic soda lake. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2618-2623.	0.8	45
150	Modulation of lignin deposition/composition via phytic acid reduction in seed improves the quality of barley straw for sugar release and ethanol production. Biomass and Bioenergy, 2012, 46, 584-592.	2.9	6
151	Structural and Thermal Characterization of Wheat Straw Pretreated with Aqueous Ammonia Soaking. Journal of Agricultural and Food Chemistry, 2012, 60, 8632-8639.	2.4	43
152	Microwave Torrefaction of Douglas Fir Sawdust Pellets. Energy & En	2.5	88
153	Metabolism of Polycyclic Aromatic Hydrocarbons by the Wood-Feeding Termite Coptotermes formosanus (Shiraki). Journal of Agricultural and Food Chemistry, 2012, 60, 1788-1797.	2.4	9
154	Engineering of a Xylose Metabolic Pathway in Rhodococcus Strains. Applied and Environmental Microbiology, 2012, 78, 5483-5491.	1.4	50
155	Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresource Technology, 2012, 118, 177-186.	4.8	110
156	A review on parameterization and uncertainty in modeling greenhouse gas emissions from soil. Geoderma, 2012, 170, 206-216.	2.3	50
157	Estimating greenhouse gas emissions from soil following liquid manure applications using a unit response curve method. Geoderma, 2012, 170, 295-304.	2.3	6
158	Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst. Journal of Analytical and Applied Pyrolysis, 2012, 98, 194-200.	2.6	67
159	Rapid triacylglyceride detection and quantification in live micro-algal cultures via liquid state 1H NMR. Algal Research, 2012, 1, 166-175.	2.4	37
160	Using ammonia for algae harvesting and as nutrient in subsequent cultures. Bioresource Technology, 2012, 121, 298-303.	4.8	61
161	Experimental and modeling study of a two-stage pilot scale high solid anaerobic digester system. Bioresource Technology, 2012, 124, 8-17.	4.8	28
162	Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnology for Biofuels, 2012, 5, 50.	6.2	107

#	Article	IF	Citations
163	Hydrodynamic and kinetic study of cellulase production by <i>Trichoderma reesei</i> with pellet morphology. Biotechnology and Bioengineering, 2012, 109, 1755-1768.	1.7	23
164	Secretome characteristics of pelletized Trichoderma reesei and cellulase production. World Journal of Microbiology and Biotechnology, 2012, 28, 2635-2641.	1.7	5
165	Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology. Fuel, 2012, 95, 63-70.	3.4	101
166	Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet. Journal of Analytical and Applied Pyrolysis, 2012, 94, 163-169.	2.6	141
167	Oleaginous yeast Cryptococcus curvatus for biofuel production: Ammonia's effect. Biomass and Bioenergy, 2012, 37, 114-121.	2.9	84
168	Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresource Technology, 2012, 103, 484-488.	4.8	129
169	Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh. Bioresource Technology, 2012, 104, 737-742.	4.8	125
170	Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Bioresource Technology, 2012, 110, 617-627.	4.8	95
171	Advanced biorefinery in lower termite-effect of combined pretreatment during the chewing process. Biotechnology for Biofuels, 2012, 5, 11.	6.2	26
172	Pigment removal in anaerobically digested effluent through polyelectrolyte flocculation and liquid–liquid extraction. Journal of Chemical Technology and Biotechnology, 2012, 87, 1098-1103.	1.6	4
173	Study on biopretreatment of lignin by white-rot fungi for enhancing pyrolysis in inert atmosphere. Wood Science and Technology, 2012, 46, 515-527.	1.4	8
174	Biodegradation of Hardwood Lignocellulosics by the Western Poplar Clearwing Borer, Paranthrene robiniae (Hy. Edwards). Biomacromolecules, 2011, 12, 1610-1620.	2.6	33
175	Strain improvement and process optimization of <i>Trichderma reesei </i> Rut C30 for enhanced cellulase production. Biofuels, 2011, 2, 545-555.	1.4	10
176	Effects of biopretreatment of corn stover with white-rot fungus on low-temperature pyrolysis products. Bioresource Technology, 2011, 102, 3498-3503.	4.8	42
177	Bicarbonate produced from carbon capture for algae culture. Trends in Biotechnology, 2011, 29, 537-541.	4.9	230
178	Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). International Biodeterioration and Biodegradation, 2011, 65, 744-756.	1.9	29
179	Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production. International Journal of Hydrogen Energy, 2011, 36, 9542-9550.	3.8	99
180	Bipolar effects of settling time on active biomass retention in anaerobic sequencing batch reactors digesting flushed dairy manure. Bioresource Technology, 2011, 102, 697-702.	4.8	11

#	Article	IF	Citations
181	Lipid Production by Culturing Oleaginous Yeast and Algae with Food Waste and Municipal Wastewater in an Integrated Process. Applied Biochemistry and Biotechnology, 2011, 165, 442-453.	1.4	161
182	In situ lignocellulosic unlocking mechanism for carbohydrate hydrolysis in termites: crucial lignin modification. Biotechnology for Biofuels, 2011, 4, 17.	6.2	52
183	Biogas potential and microbial population distributions in flushed dairy manure and implications on anaerobic digestion technology. Journal of Chemical Technology and Biotechnology, 2011, 86, 145-152.	1.6	21
184	Numerical simulation of mechanical mixing in high solid anaerobic digester. Bioresource Technology, 2011, 102, 1012-1018.	4.8	72
185	Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts. Bioresource Technology, 2011, 102, 3206-3214.	4.8	106
186	Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresource Technology, 2011, 102, 6134-6140.	4.8	392
187	Bioethanol production using genetically modified and mutant wheat and barley straws. Biomass and Bioenergy, 2011, 35, 542-548.	2.9	25
188	Investigation of wheat straw biodegradation by Phanerochaete chrysosporium. Biomass and Bioenergy, 2011, 35, 1030-1040.	2.9	79
189	Thermal characterization of softwood lignin modification by termite Coptotermes formosanus (Shiraki). Biomass and Bioenergy, 2011, 35, 3617-3626.	2.9	59
190	Thermal decomposition kinetics of wheat straw treated by Phanerochaete chrysosporium. International Biodeterioration and Biodegradation, 2011, 65, 410-414.	1.9	30
191	Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid. Process Biochemistry, 2011, 46, 1436-1441.	1.8	42
192	Releasing Phosphorus from Calcium for Struvite Fertilizer Production from Anaerobically Digested Dairy Effluent. Water Environment Research, 2010, 82, 34-42.	1.3	97
193	Impact of Calcium on Struvite Precipitation from Anaerobically Digested Dairy Wastewater. ACS Symposium Series, 2010, , 123-134.	0.5	2
194	Performances of Lactobacillus brevis for Producing Lactic Acid from Hydrolysate of Lignocellulosics. Applied Biochemistry and Biotechnology, 2010, 161, 124-136.	1.4	80
195	Hydroâ€climatic variability and trends in Washington State for the last 50 years. Hydrological Processes, 2010, 24, 866-878.	1.1	27
196	Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresource Technology, 2010, 101, 9688-9699.	4.8	192
197	System integration for producing microalgae as biofuel feedstock. Biofuels, 2010, 1, 889-910.	1.4	8
198	Biological Pretreatment of Corn Stover by Irpex lacteus for Enzymatic Hydrolysis. Journal of Agricultural and Food Chemistry, 2010, 58, 10893-10898.	2.4	99

#	Article	IF	CITATIONS
199	Biological pretreatment of lignocellulosics: potential, progress and challenges. Biofuels, 2010, 1, 177-199.	1.4	108
200	Changes in microbial community composition following treatment of methanogenic granules with chloroform. Environmental Progress and Sustainable Energy, 2009, 28, 60-71.	1.3	10
201	Combinations of Horizontal and Vertical Flow Constructed Wetlands to Improve Nitrogen Removal. Water, Air and Soil Pollution, 2009, 9, 279-286.	0.8	19
202	Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Applied Microbiology and Biotechnology, 2009, 81, 1141-1148.	1.7	131
203	Pyrolysis Gas Chromatography Mass Spectrometry Studies to Evaluate High-Temperature Aqueous Pretreatment as a Way to Modify the Composition of Bio-Oil from Fast Pyrolysis of Wheat Straw. Energy & Energ	2.5	39
204	Anaerobic Codigestion of Kitchen Waste with Cattle Manure for Biogas Production. Energy & Samp; Fuels, 2009, 23, 2225-2228.	2.5	118
205	The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Applied Microbiology and Biotechnology, 2008, 81, 399-417.	1.7	213
206	Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules. Applied Biochemistry and Biotechnology, 2008, 148, 83-95.	1.4	21
207	Study of pellet formation of filamentous fungiRhizopus oryzae using a multiple logistic regression model. Biotechnology and Bioengineering, 2008, 99, 117-128.	1.7	55
208	CFD simulation of nonâ€Newtonian fluid flow in anaerobic digesters. Biotechnology and Bioengineering, 2008, 99, 700-711.	1.7	126
209	Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure. Biotechnology and Bioengineering, 2008, 101, 441-451.	1.7	56
210	Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material – dairy manure – using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344. Bioresource Technology, 2008, 99, 5859-5866.	4.8	75
211	Impacts of Climate Change on Regional Hydrological Regimes in the Spokane River Watershed. Journal of Hydrologic Engineering - ASCE, 2007, 12, 452-461.	0.8	52
212	Impacts of climate variability on stream-flow in the Yellow River. Hydrological Processes, 2007, 21, 3431-3439.	1.1	103
213	Anaerobic digestion of liquid dairy manure using a sequential continuousâ€stirred tank reactor system. Journal of Chemical Technology and Biotechnology, 2007, 82, 758-766.	1.6	32
214	Studying the effects of reaction conditions on components of dairy manure and cellulose accumulation using dilute acid treatment. Bioresource Technology, 2007, 98, 1992-1999.	4.8	22
215	A new approach of pellet formation of a filamentous fungus – Rhizopus oryzae. Bioresource Technology, 2007, 98, 3415-3423.	4.8	85
216	Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 2007, 32, 3266-3273.	3.8	178

#	Article	IF	Citations
217	A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry, 2007, 42, 1537-1545.	1.8	332
218	Performance evaluation of radial/vertical flow clarification applied to recirculating aquaculture systems. Aquacultural Engineering, 2006, 34, 47-55.	1.4	20
219	Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering, 2006, 34, 179-197.	1.4	329
220	Water Crisis in the Yellow River: Facts, Reasons, Impacts, and Countermeasures. Water Practice and Technology, 2006, 1, .	1.0	7
221	Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil and Tillage Research, 2006, 85, 38-49.	2.6	146
222	Stimulation of Nisin Production From Whey by a Mixed Culture of <i>Lactococcus lactis</i> and <i>Saccharomyces cerevisiae</i> Applied Biochemistry and Biotechnology, 2006, 131, 751-761.	1.4	30
223	Optimization of <scp>I</scp> -(+)-Lactic Acid Production Using Pelletized Filamentous <i>Rhizopus oryzae</i> NRRL 395. Applied Biochemistry and Biotechnology, 2006, 131, 844-853.	1.4	26
224	Production of cellulase by Trichoderma reesei from dairy manure. Bioresource Technology, 2005, 96, 491-499.	4.8	158
225	Production of Cellulase/ \hat{I}^2 -Glucosidase by the Mixed Fungi Culture of <1> Trichoderma reesei 1 and <1> Aspergillus phoenicis 1 on Dairy Manure. Applied Biochemistry and Biotechnology, 2005, 121, 0093-0104.	1.4	19
226	Effects of Hemicellulose and Lignin on Enzymatic Hydrolysis of Cellulose from Dairy Manure. Applied Biochemistry and Biotechnology, 2005, 124, 1017-1030.	1.4	44
227	Anaerobic Digestion of Dairy Manure in a Hybrid Reactor with Biogas Recirculation. World Journal of Microbiology and Biotechnology, 2005, 21, 1509-1514.	1.7	45
228	Impact of organic carbon on nitrification performance of different biofilters. Aquacultural Engineering, 2005, 33, 150-162.	1.4	108
229	Modeling Flow and Pollutant Removal of Wet Detention Pond Treating Stormwater Runoff. Journal of Environmental Engineering, ASCE, 2004, 130, 1315-1321.	0.7	16
230	Simultaneous Production of Nisin and Lactic Acid from Cheese Whey: Optimization of Fermentation Conditions Through Statistically Based Experimental Designs. Applied Biochemistry and Biotechnology, 2004, 114, 627-638.	1.4	38
231	Hydro-Climatic Trends of the Yellow River Basin for the Last 50 Years. Climatic Change, 2004, 65, 149-178.	1.7	272
232	Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresource Technology, 2004, 91, 31-39.	4.8	154
233	Investigating the conversion coefficients for free water surface evaporation of different evaporation pans. Hydrological Processes, 2004, 18, 2247-2262.	1.1	82
234	Optimizing dilute acid hydrolysis of hemicellulose in a nitrogen-rich cellulosic material––dairy manure. Bioresource Technology, 2004, 94, 33-41.	4.8	69

#	Article	IF	Citations
235	Reducing phosphorus discharge from flow-through aquaculture I: facility and effluent characterization. Aquacultural Engineering, 2004, 32, 129-144.	1.4	40
236	Reducing phosphorous discharge from flow-through aquaculture. Aquacultural Engineering, 2004, 32, 145-160.	1.4	14
237	Reducing phosphorus discharge from flow-through aquaculture. Aquacultural Engineering, 2004, 32, 161-170.	1.4	12
238	Effects of Air Diffusion Turbulent Flow on Nitrification Rate in Fixedâ€Film Biofilters: A Comparison Study. North American Journal of Aquaculture, 2003, 65, 240-247.	0.7	8
239	The impact of temperature on nitrification rate in fixed film biofilters. Aquacultural Engineering, 2002, 26, 221-237.	1.4	122
240	Modelling overland flow based on Saint-Venant equations for a discretized hillslope system. Hydrological Processes, 2002, 16, 2409-2421.	1.1	18
241	Impacts of Reynolds number on nitrification biofilm kinetics. Aquacultural Engineering, 2001, 24, 213-229.	1.4	31
242	Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacultural Engineering, $2001, 25, 1-11$.	1.4	156
243	Waste excretion characteristics of Manila clams (Tapes philippinarum) under different temperature conditions. Aquacultural Engineering, 1999, 20, 231-244.	1.4	16
244	An experimental study on nitrification biofilm performances using a series reactor system. Aquacultural Engineering, 1999, 20, 245-259.	1.4	64
245	Mixing cell method for solving the solute transport equation with spatially variable coefficients. Hydrological Processes, 1998, 12, 781-795.	1.1	0
246	Preliminary Evaluation of the Use of Phosphogypsum for Reef Substrate. I. A Laboratory Study of Bioaccumulation of Radium and Six Heavy Metals in an Aquatic Food Chain. Chemistry and Ecology, 1998, 14, 305-319.	0.6	4
247	Modeling Alachlor Transport in Saturated Soils from Noâ€till and Conventional Tillage Systems. Journal of Environmental Quality, 1997, 26, 1300-1307.	1.0	13
248	Sludge Production and Management for Recirculating Aquacultural Systems. Journal of the World Aquaculture Society, 1997, 28, 303-315.	1.2	82
249	Optimization of l-(+)-lactic acid production using pelletized filamentous Rhizopus oryzae NRRL 395. Applied Biochemistry and Biotechnology, 1996, 131, 844-853.	1.4	0
250	Impact of friction, flow rate and loading density on automated soft-shell crawfish separation. Aquacultural Engineering, 1995, 14, 1-13.	1.4	2
251	Effects of temperature on mean molt interval, molting and mortality of red swamp crawfish (Procambarus clarkii). Aquaculture, 1995, 131, 205-217.	1.7	24
252	Effects of temperature upon ablation-to-molt interval and mortality of red swamp crawfish (Procambarus clarkii) subjected to bilateral eyestalk ablation. Aquaculture, 1995, 138, 191-204.	1.7	8

SHULIN CHEN

#	Article	IF	CITATIONS
253	Preliminary Design of an Electrical Inhibition Gate for Application in an Automated Soft-Shell Crawfish Separation System. Journal of Applied Aquaculture, 1994, 4, 15-30.	0.7	3
254	Modeling surfactant removal in foam fractionation: I $\hat{a} \in$ Theoretical development. Aquacultural Engineering, 1994, 13, 163-181.	1.4	30
255	Modeling surfactant removal in foam fractionation: Il — Experimental investigations. Aquacultural Engineering, 1994, 13, 183-200.	1.4	24
256	Retention of Intermolt Crawfish in a Hydraulic Soft-Shell Crawfish Separation Unit. Journal of Applied Aquaculture, 1994, 4, 57-70.	0.7	0
257	Molting and Mortality of Red Swamp and White River Crawfish Subjected to Eyestalk Ablation: A Preliminary Study for Commercial Soft-Shell Crawfish Production. Journal of the World Aquaculture Society, 1993, 24, 48-57.	1.2	6
258	Suspended solids characteristics from recirculating aquacultural systems and design implications. Aquaculture, 1993, 112, 143-155.	1.7	125
259	Suspended-Solids Removal by Foam Fractionation. Progressive Fish-Culturist, 1993, 55, 69-75.	0.6	35
260	Protein and Its Removal by Foam Fractionation. Progressive Fish-Culturist, 1993, 55, 76-82.	0.6	11
261	Use of Electrical Stimulation in the Automatic Separation of Soft-Shell Crawfish. Progressive Fish-Culturist, 1993, 55, 114-120.	0.6	4
262	A mathematical model for soft-shell crawfish production. Aquacultural Engineering, 1992, 11, 217-229.	1.4	4
263	Bubble size distribution in a bubble column applied to aquaculture systems. Aquacultural Engineering, 1992, 11, 267-280.	1.4	24