Najib Cheggour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2749755/publications.pdf Version: 2024-02-01

NAUR CHECCOUR

#	Article	IF	CITATIONS
1	Reversible axial-strain effect and extended strain limits in Y-Ba-Cu-O coatings on deformation-textured substrates. Applied Physics Letters, 2003, 83, 4223-4225.	3.3	126
2	Reversible axial-strain effect in Y–Ba–Cu–O coated conductors. Superconductor Science and Technology, 2005, 18, S319-S324.	3.5	88
3	Mechanical properties of pure Ni and Ni-alloy substrate materials for Y–Ba–Cu–O coated superconductors. Cryogenics, 2006, 46, 432-438.	1.7	80
4	A probe for investigating the effects of temperature, strain, and magnetic field on transport critical currents in superconducting wires and tapes. Review of Scientific Instruments, 2000, 71, 4521.	1.3	65
5	Reversible effect of strain on transport critical current in Bi ₂ Sr ₂ CaCu ₂ O _{8 +<i>x</i>} superconducting wires: a modified descriptive strain model. Superconductor Science and Technology, 2012, 25, 015001.	3.5	50
6	Internal Tin \${hbox {Nb}}_{3}{hbox {Sn}}\$ Conductors Engineered for Fusion and Particle Accelerator Applications. IEEE Transactions on Applied Superconductivity, 2009, 19, 2573-2579.	1.7	47
7	Progress in scale-up of second-generation high-temperature superconductors at SuperPower Inc. Physica C: Superconductivity and Its Applications, 2005, 426-431, 849-857.	1.2	39
8	Enhancement of the irreversible axial-strain limit of Y-Ba-Cu-O-coated conductors with the addition of a Cu layer. Applied Physics Letters, 2005, 87, 212505.	3.3	36
9	Magnetic-Field Dependence of the Reversible Axial-Strain Effect in Y-Ba-Cu-O Coated Conductors. IEEE Transactions on Applied Superconductivity, 2005, 15, 3577-3580.	1.7	33
10	Unifying the strain and temperature scaling laws for the pinning force density in superconducting niobium-tin multifilamentary wires. Journal of Applied Physics, 1999, 86, 552-555.	2.5	32
11	The unified strain and temperature scaling law for the pinning force density of bronze-route Nb3Sn wires in high magnetic fields. Cryogenics, 2002, 42, 299-309.	1.7	31
12	Transverse compressive stress effect in Y-Ba-Cu-O coatings on biaxially textured Ni and Ni-W substrates. IEEE Transactions on Applied Superconductivity, 2003, 13, 3530-3533.	1.7	30
13	Influence of Ti and Ta doping on the irreversible strain limit of ternary Nb ₃ Sn superconducting wires made by the restacked-rod process. Superconductor Science and Technology, 2010, 23, 052002.	3.5	30
14	Transverse stress and fatigue effects in Y-Ba-Cu-O coated IBAD tapes. IEEE Transactions on Applied Superconductivity, 2001, 11, 3389-3392.	1.7	28
15	Electromechanical Characterization of Bi-2212 Strands. IEEE Transactions on Applied Superconductivity, 2011, 21, 3086-3089.	1.7	23
16	Test Results of the First US ITER TF Conductor in SULTAN. IEEE Transactions on Applied Superconductivity, 2009, 19, 1478-1482.	1.7	22
17	Method for determining the irreversible strain limit of Nb3Sn wires. Superconductor Science and Technology, 2011, 24, 075022.	3.5	19
18	Enhancement of the critical current density in Chevrel phase superconducting wires. Journal of Applied Physics, 1997, 81, 6277-6284.	2.5	18

NAJIB CHEGGOUR

#	Article	IF	CITATIONS
19	Effect of Fatigue Under Transverse Compressive Stress on Slit Y-Ba-Cu-O Coated Conductors. IEEE Transactions on Applied Superconductivity, 2007, 17, 3063-3066.	1.7	18
20	Unified Scaling Law for flux pinning in practical superconductors: II. Parameter testing, scaling constants, and the Extrapolative Scaling Expression. Superconductor Science and Technology, 2016, 29, 123002.	3.5	17
21	Compressive Pre-Strain in High-Niobium-Fraction <tex>\$rm Nb_3rm Sn\$</tex> Superconductors. IEEE Transactions on Applied Superconductivity, 2005, 15, 3560-3563.	1.7	15
22	Irreversibility line and granularity in Chevrel phase superconducting wires. Journal of Applied Physics, 1998, 84, 2181-2183.	2.5	14
23	Strain and Magnetization Properties of High Subelement Count Tube-Type \${m Nb}_{3}{m Sn}\$ Strands. IEEE Transactions on Applied Superconductivity, 2011, 21, 2559-2562.	1.7	14
24	Dispersion-Strengthened Silver Alumina for Sheathing \$ hbox{Bi}_{2}hbox{Sr}_{2}hbox{CaCu}_{2}hbox{O}_{8 + {x}}\$ Multifilamentary Wire. IEEE Transactions on Applied Superconductivity, 2012, 22, 8400210-8400210.	1.7	14
25	Precipitous change of the irreversible strain limit with heat-treatment temperature in Nb3Sn wires made by the restacked-rod process. Scientific Reports, 2018, 8, 13048.	3.3	13
26	Promising critical current density in the Chevrel phase superconducting wires. Physica C: Superconductivity and Its Applications, 1996, 258, 21-29.	1.2	12
27	Correlation Between Pressure Dependence of Critical Temperature and the Reversible Strain Effect on the Critical Current and Pinning Force in \$hbox{Bi}_{2}hbox{Sr}_{2} hbox{CaCu}_{2}hbox{O}_{8 + x} Wires. IEEE Transactions on Applied Superconductivity, 2012, 22, 8400307-8400307.	1.7	12
28	Extrapolative Scaling Expression: A Fitting Equation for Extrapolating Full Ic (Β,Τ,Ϊμ) Data Matrixes From Limited Data. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-7.	1.7	12
29	Strain and Magnetic-Field Characterization of a Bronze-Route \${m Nb}_{3}{m Sn}\$ ITER Wire: Benchmarking of Strain Measurement Facilities at NIST and University of Twente. IEEE Transactions on Applied Superconductivity, 2012, 22, 4805104-4805104.	1.7	11
30	Implications of the strain irreversibility cliff on the fabrication of particle-accelerator magnets made of restacked-rod-process Nb3Sn wires. Scientific Reports, 2019, 9, 5466.	3.3	10
31	An Octagonal Architecture for High Strength PIT \${m Nb}_{3}{m Sn}\$ Conductors. IEEE Transactions on Applied Superconductivity, 2009, 19, 2598-2601.	1.7	9
32	Interlaboratory Comparisons of NbTi Critical Current Measurements. IEEE Transactions on Applied Superconductivity, 2009, 19, 2633-2636.	1.7	9
33	Unified Scaling Law for flux pinning in practical superconductors: III. Minimum datasets, core parameters, and application of the Extrapolative Scaling Expression. Superconductor Science and Technology, 2017, 30, 033005.	3.5	9
34	Critical-Current Measurements on ITER \${hbox{Nb}}_{3}{hbox{Sn}}\$ Strands: Effect of Temperature. IEEE Transactions on Applied Superconductivity, 2007, 17, 1398-1401.	1.7	8
35	Critical current distribution of hot isostatically pressed PbMo6S8 wires. Physica C: Superconductivity and Its Applications, 1994, 234, 343-354.	1.2	7
36	Critical-Current Measurements on an ITER Nb\$_{3}\$Sn Strand: Effect of Axial Tensile Strain. IEEE Transactions on Applied Superconductivity, 2007, 17, 1366-1369.	1.7	7

NAJIB CHEGGOUR

#	Article	IF	CITATIONS
37	Variable-temperature transport critical currents of niobium-tin wires under strain in high magnetic fields. IEEE Transactions on Applied Superconductivity, 1999, 9, 2517-2520.	1.7	5
38	The effect of hot isostatic pressing on the strain tolerance of the critical current density found in modified jelly roll Nb/sub 3/Sn wires. IEEE Transactions on Applied Superconductivity, 1999, 9, 1447-1450.	1.7	4
39	Dependence of critical current densities in Chevrel phase superconducting wires on magnetic fields up to 25 T. Physica B: Condensed Matter, 1995, 211, 272-274.	2.7	3
40	Overall critical current density of Chevrel wires at high magnetic field. IEEE Transactions on Applied Superconductivity, 1997, 7, 1759-1762.	1.7	3
41	Development of a Multifilament PIT \${m V}_{3}{m Ga}\$ Conductor for Fusion Applications. IEEE Transactions on Applied Superconductivity, 2011, 21, 2529-2532.	1.7	2
42	Upper critical field measurements in high-Tc superconducting oxides. Physica B: Condensed Matter, 1989, 155, 186-188.	2.7	1
43	Overall critical current density of chevrel wires in magnetic fields up to 24 tesla. European Physical Journal D, 1996, 46, 2757-2758.	0.4	0
44	A procedural solution for determining the temperature dependence of transport critical current in Nb3Sn superconducting wires using magnetization measurements. Superconductor Science and Technology, 0, , .	3.5	0

4