
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2749728/publications.pdf Version: 2024-02-01

AIREDT FEDDED

#	Article	IF	CITATIONS
1	Pseudomonas germanica sp. nov., isolated from Iris germanica rhizomes. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	4
2	Structural and functional analysis of tomato sterol C22 desaturase. BMC Plant Biology, 2021, 21, 141.	1.6	3
3	Phytosterol metabolism in plant positive-strand RNA virus replication. Plant Cell Reports, 2021, , 1.	2.8	3
4	Distinct metabolic pathways drive monoterpenoid biosynthesis in a natural population of Pelargonium graveolens. Journal of Experimental Botany, 2020, 71, 258-271.	2.4	18
5	Inactivation of UDP-Glucose Sterol Glucosyltransferases Enhances Arabidopsis Resistance to Botrytis cinerea. Frontiers in Plant Science, 2019, 10, 1162.	1.7	17
6	Nerolidol production in agroinfiltrated tobacco: Impact of protein stability and membrane targeting of strawberry (Fragraria ananassa) NEROLIDOL SYNTHASE1. Plant Science, 2018, 267, 112-123.	1.7	4
7	Identification and Characterization of Sterol Acyltransferases Responsible for Steryl Ester Biosynthesis in Tomato. Frontiers in Plant Science, 2018, 9, 588.	1.7	15
8	Complex interplays between phytosterols and plastid development. Plant Signaling and Behavior, 2017, 12, e1387708.	1.2	4
9	Emerging roles for conjugated sterols in plants. Progress in Lipid Research, 2017, 67, 27-37.	5.3	161
10	Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme. Frontiers in Plant Science, 2017, 8, 984.	1.7	37
11	Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses. Plant Physiology, 2016, 172, 93-117.	2.3	32
12	Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. Advances in Experimental Medicine and Biology, 2016, 896, 263-285.	0.8	5
13	Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast. Nature Communications, 2016, 7, 12942.	5.8	122
14	Towards Elucidating Carnosic Acid Biosynthesis in Lamiaceae: Functional Characterization of the Three First Steps of the Pathway in Salvia fruticosa and Rosmarinus officinalis. PLoS ONE, 2015, 10, e0124106.	1.1	67
15	Arabidopsis Squalene Epoxidase 3 (SQE3) Complements SQE1 and Is Important for Embryo Development and Bulk Squalene Epoxidase Activity. Molecular Plant, 2015, 8, 1090-1102.	3.9	59
16	Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metabolic Engineering, 2014, 23, 145-153.	3.6	68
17	Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry, 2014, 101, 52-64.	1.4	106
18	Determination of 3-Hydroxy-3-methylglutaryl CoA Reductase Activity in Plants. Methods in Molecular Biology, 2014, 1153, 21-40.	0.4	7

#	Article	IF	CITATIONS
19	Farnesyl Diphosphate Synthase Assay. Methods in Molecular Biology, 2014, 1153, 41-53.	0.4	5
20	Three-step pathway engineering results in more incidence rate and higher emission of nerolidol and improved attraction of Diadegma semiclausum. Metabolic Engineering, 2013, 15, 88-97.	3.6	35
21	The <i>SUD1</i> Gene Encodes a Putative E3 Ubiquitin Ligase and Is a Positive Regulator of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in <i>Arabidopsis</i> Ä Â. Plant Cell, 2013, 25, 728-743.	3.1	78
22	Biosynthesis of Isoprenoid Precursors in Arabidopsis. , 2012, , 439-456.		5
23	Characterization of Arabidopsis FPS Isozymes and FPS Gene Expression Analysis Provide Insight into the Biosynthesis of Isoprenoid Precursors in Seeds. PLoS ONE, 2012, 7, e49109.	1.1	30
24	Modulation of plant HMG-CoA reductase by protein phosphatase 2A. Plant Signaling and Behavior, 2011, 6, 1127-1131.	1.2	41
25	Multilevel Control of <i>Arabidopsis</i> 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase by Protein Phosphatase 2A. Plant Cell, 2011, 23, 1494-1511.	3.1	99
26	The Arabidopsis thaliana FPP synthase isozymes have overlapping and specific functions in isoprenoid biosynthesis, and complete loss of FPP synthase activity causes early developmental arrest. Plant Journal, 2010, 63, 512-525.	2.8	80
27	PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) Integrates the Regulation of Sugar Responses with Isoprenoid Metabolism in Arabidopsis. Molecular Plant, 2010, 3, 101-112.	3.9	64
28	Identification of the Arabidopsis <i>dry2/sqe1$\hat{a}\in 5$</i> mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. Plant Journal, 2009, 59, 63-76.	2.8	114
29	Arabidopsis 3-hydroxy-3-methylglutaryl-CoA reductase is regulated at the post-translational level in response to alterations of the sphingolipid and the sterol biosynthetic pathways. Phytochemistry, 2009, 70, 53-59.	1.4	58
30	Arabidopsis thaliana contains a single gene encoding squalene synthase. Plant Molecular Biology, 2008, 67, 25-36.	2.0	63
31	Mitochondrial targeting of farnesyl diphosphate synthase is a widespread phenomenon in eukaryotes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 419-426.	1.9	30
32	Arabidopsis thaliana expresses two functional isoforms of Arvp, a protein involved in the regulation of cellular lipid homeostasis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 725-735.	1.2	29
33	Overexpression of Farnesyl Diphosphate Synthase in Arabidopsis Mitochondria Triggers Light-dependent Lesion Formation and Alters Cytokinin Homeostasis. Plant Molecular Biology, 2006, 61, 195-213.	2.0	30
34	Subcellular Localization of Arabidopsis 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase. Plant Physiology, 2005, 137, 57-69.	2.3	102
35	Distinct Light-Mediated Pathways Regulate the Biosynthesis and Exchange of Isoprenoid Precursors during Arabidopsis Seedling Development. Plant Cell, 2004, 16, 144-156.	3.1	189
36	The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyl diphosphate synthase (isoform�1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity. Planta, 2004, 219, 982-992.	1.6	65

#	Article	IF	CITATIONS
37	High Level Expression of Chorismate Pyruvate-Lyase (UbiC) and HMG-CoA Reductase in Hairy Root Cultures of Lithospermum erythrorhizon. Plant and Cell Physiology, 2002, 43, 894-902.	1.5	24
38	Expression and Molecular Analysis of the ArabidopsisDXR Gene Encoding 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase, the First Committed Enzyme of the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway. Plant Physiology, 2002, 129, 1581-1591.	2.3	203
39	Overexpression ofArabidopsis thalianafarnesyl diphosphate synthase (FPS1S) in transgenicArabidopsisinduces a cell death/senescence-like response and reduced cytokinin levels. Plant Journal, 2002, 30, 123-132.	2.8	102
40	Contribution of engineered electrostatic interactions to the stability of cytosolic malate dehydrogenase. Protein Engineering, Design and Selection, 2001, 14, 911-917.	1.0	11
41	Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana. Plant Molecular Biology, 2000, 42, 365-376.	2.0	48
42	The Arabidopsis thaliana PPX/PP4 phosphatases: molecular cloning and structural organization of the genes and immunolocalization of the proteins to plastids. Plant Molecular Biology, 2000, 44, 499-511.	2.0	15
43	Spatial and temporal patterns of GUS expression directed by 5' regions of the Arabidopsis thaliana farnesyl diphosphate synthase genes FPS1 and FPS2. Plant Molecular Biology, 2000, 44, 747-758.	2.0	36
44	Characterization of dehydrodolichyl diphosphate synthase ofArabidopsis thaliana, a key enzyme in dolichol biosynthesis. FEBS Letters, 2000, 477, 170-174.	1.3	82
45	Mevalonate Biosynthesis in Plants. Critical Reviews in Biochemistry and Molecular Biology, 1999, 34, 107-122.	2.3	56
46	Molecular cloning and characterization of two phosphatase 2A catalytic subunit genes from Arabidopsis thaliana. Gene, 1998, 209, 105-112.	1.0	21
47	Protein Phosphatase 2A and Protein Phosphatase X Genes in Arabidopsis thaliana. , 1998, 93, 201-212.		2
48	The Arabidopsis thaliana FPS1 Gene Generates a Novel mRNA That Encodes a Mitochondrial Farnesyl-diphosphate Synthase Isoform. Journal of Biological Chemistry, 1997, 272, 15381-15388.	1.6	152
49	Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions. Biochemical Journal, 1997, 325, 101-109.	1.7	113
50	Cloning and Characterization of the Arabidopsis Thaliana SQS1 Gene Encoding Squalene Synthase. Involvement of the C-Terminal Region of the Enzyme in the Channeling of Squalene through the Sterol Pathway. FEBS Journal, 1997, 249, 61-69.	0.2	79
51	Arabidopsis thaliana Contains Two Differentially Expressed Farnesyl-Diphosphate Synthase Genes. Journal of Biological Chemistry, 1996, 271, 7774-7780.	1.6	158
52	Bacterial Expression of the Catalytic Domain of 3-Hydroxy-3-Methylglutaryl-CoA Reductase (Isoform) Tj ETQq0 0 C oleracea 3-Hydroxy-3-Methylglutaryl-CoA Reductase Kinase. FEBS Journal, 1995, 233, 506-513.	0 rgBT /0 0.2	Overlock 10 Tf 120
53	Molecular characterization of a fourth isoform of the catalytic subunit of protein phosphatase 2A from Arabidopsis thaliana. Plant Molecular Biology, 1994, 26, 523-528.	2.0	39
54	Two Radish Genes for 3-Hydroxy-3-Methylglutaryl-CoA Reductase Isozymes Complement Mevalonate Auxotrophy in a Yeast Mutant and Yield Membrane-Bound Active Enzyme. Journal of Plant Physiology, 1994, 143, 479-487.	1.6	38

#	Article	IF	CITATIONS
55	Protein phosphatases in higher plants: multiplicity of type 2A phosphatases in Arabidopsis thaliana. Plant Molecular Biology, 1993, 21, 475-485.	2.0	75
56	Identification and molecular cloning of two homologues of protein phosphatase X from Arabidopsis thaliana. Plant Molecular Biology, 1993, 23, 1177-1185.	2.0	24
57	Properties and Molecular Cloning of Plant HMG-CoA Reductase. , 1992, , 29-49.		2
58	Aspects related to mevalonate biosynthesis in plants. Lipids, 1991, 26, 637-648.	0.7	53
59	Expression of catalytically active radish 3-hydroxy-3-methylglutaryl coenzyme A reductase inEscherichia coli. FEBS Letters, 1990, 266, 67-71.	1.3	33
60	Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Molecular Biology, 1989, 13, 627-638.	2.0	136
61	Allosteric Activation of Rat Liver Microsomal [Hydroxymethylglutaryl-CoA Reductase (NADPH)]Kinase by Nucleoside Phosphates. Biological Chemistry Hoppe-Seyler, 1987, 368, 249-258.	1.4	6
62	Reaction of 5′-p-fluorosulfonylbenzoyladenosine with the catalytic and AMP allosteric sites of microsomal HMG-CoA reductase kinase. Biochemical and Biophysical Research Communications, 1987, 148, 1009-1016.	1.0	3
63	Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl Coenzyme A reductase kinase by adenosine 5′-monophosphate. Biochemical and Biophysical Research Communications, 1985, 132, 497-504.	1.0	116
64	Phosphorylation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase. Archives of Biochemistry and Biophysics, 1984, 230, 227-237.	1.4	22
65	Inactivation and Reactivation of Rat Liver 3-Hydroxy-3-methylglutaryl-CoA-Reductase Phosphatases: Effect of Phosphate, Pyrophosphate and Divalent Cations. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1982, 363, 1217-1224.	1.7	7