
Benjamin T Manard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2749189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved uranium isotopic ratio determinations for the liquid sampling-atmospheric pressure glow discharge orbitrap mass spectrometer by use of moving average processing. Journal of Analytical Atomic Spectrometry, 2022, 37, 814-822.	1.6	5
2	Direct isotopic analysis of solid uranium particulates on cotton swipes by microextraction-ICP-MS. Analytica Chimica Acta, 2022, 1209, 339836.	2.6	10
3	Investigation of the 176Yb Interference Correction during Determination of the 176Hf/177Hf Ratio by Laser Ablation and Solution Analysis on the Neoma MC-ICP-MS. Minerals (Basel, Switzerland), 2022, 12, 882.	0.8	0
4	Determination of fluorine distribution in shark teeth by laser-induced breakdown spectroscopy. Metallomics, 2022, 14, .	1.0	6
5	Determination of phosphorus and sulfur in uranium ore concentrates by triple quadrupole inductively coupled plasma mass spectrometry. Talanta, 2021, 221, 121573.	2.9	13
6	Trace Elemental Analysis of Bulk Thorium Using an Automated Separation–Inductively Coupled Plasma Optical Emission Spectroscopy Methodology. Applied Spectroscopy, 2021, 75, 556-564.	1.2	2
7	Direct analysis of cotton swipes for plutonium isotope determination by microextraction-ICP-MS. Journal of Analytical Atomic Spectrometry, 2021, 36, 2202-2209.	1.6	9
8	An approach to separating Pu, U, and Ti from high-purity graphite for isotopic analysis by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2021, 36, 1150-1158.	1.6	3
9	Rapid and automated separation of uranium ore concentrates for trace element analysis by inductively coupled plasma – optical emission spectroscopy/triple quadrupole mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 179, 106097.	1.5	16
10	Direct Uranium Isotopic Analysis of Swipe Surfaces by Microextraction-ICP-MS. Analytical Chemistry, 2021, 93, 11133-11139.	3.2	9
11	Exploration of ICP platforms for measuring elemental impurities in uranium ore concentrates. International Journal of Mass Spectrometry, 2020, 455, 116378.	0.7	6
12	Rapid Determination of Uranium Isotopic Abundance from Cotton Swipes: Direct Extraction via a Planar Surface Reader and Coupling to a Microplasma Ionization Source. Analytical Chemistry, 2020, 92, 8591-8598.	3.2	20
13	Revealing 3D Morphological and Chemical Evolution Mechanisms of Metals in Molten Salt by Multimodal Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 17321-17333.	4.0	20
14	Determining P, S, Br, and I content in uranium by triple quadrupole inductively coupled plasma mass spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 395-402.	0.7	11
15	Rare Earth Element Determination in Uranium Ore Concentrates Using Online and Offline Chromatography Coupled to ICP-MS. Minerals (Basel, Switzerland), 2020, 10, 55.	0.8	21
16	Rapid activation product separations from fission products and soil matrixes. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 281-289.	0.7	5
17	Investigation of handheld laser induced breakdown spectroscopy (HH LIBS) for the analysis of beryllium on swipe surfaces. Analytical Methods, 2019, 11, 752-759.	1.3	13
18	Evaluation and Specifications for In-Line Uranium Separations Using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) Detection for Trace Elemental Analysis. Applied Spectroscopy, 2019, 73, 927-935	1.2	11

Benjamin T Manard

#	Article	IF	CITATIONS
19	Optimization of uranium and plutonium separations using TEVA and UTEVA cartridges for MC-ICP-MS analysis of environmental swipe samples. Talanta, 2019, 198, 257-262.	2.9	29
20	Initial Benchmarking of the Liquid Sampling-Atmospheric Pressure Glow Discharge-Orbitrap System Against Traditional Atomic Mass Spectrometry Techniques for Nuclear Applications. Journal of the American Society for Mass Spectrometry, 2019, 30, 278-288.	1.2	23
21	Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS). Applied Spectroscopy, 2018, 72, 1653-1660.	1.2	36
22	An automated micro-separation system for the chromatographic removal of uranium matrix for trace element analysis by ICP-OES. Talanta, 2018, 189, 24-30.	2.9	27
23	Trace elemental analysis of bulk uranium materials using an inline automated sample preparation technique for ICP-OES. Talanta, 2018, 190, 460-465.	2.9	19
24	Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials. Talanta, 2017, 167, 8-13.	2.9	26
25	Laser ablation – inductively couple plasma – mass spectrometry/laser induced break down spectroscopy: a tandem technique for uranium particle characterization. Journal of Analytical Atomic Spectrometry, 2017, 32, 1680-1687.	1.6	22
26	Liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasmas for diverse spectrochemical analysis applications. Journal of Analytical Atomic Spectrometry, 2017, 32, 704-716.	1.6	48
27	Assessment of the excitation temperatures and Mg II:I line ratios of the direct current (DC) arc source for the analysis of radioactive materials. Journal of Radioanalytical and Nuclear Chemistry, 2017, 312, 385-393.	0.7	1
28	Novel sample introduction system to reduce ICP-OES sample size for plutonium metal trace impurity determination. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 2009-2014.	0.7	14
29	Capillaryâ€channeled polymer (Câ€CP) fibers for the rapid extraction of proteins from urine matrices prior to detection with MALDIâ€MS. Proteomics - Clinical Applications, 2015, 9, 522-530.	0.8	3
30	Preliminary Assessment of Potential for Metal–Ligand Speciation in Aqueous Solution via the Liquid Sampling–Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source: Uranyl Acetate. Analytical Chemistry, 2015, 87, 7218-7225.	3.2	23
31	Liquid Sampling–Atmospheric Pressure Glow Discharge as a Secondary Excitation Source for Laser Ablation-Generated Aerosols: Parametric Dependence and Robustness to Particle Loading. Applied Spectroscopy, 2015, 69, 58-66.	1.2	15
32	Liquid sampling-atmospheric pressure glow discharge excitation of atomic and ionic species. Journal of Analytical Atomic Spectrometry, 2015, 30, 285-295.	1.6	16
33	Evaluation of the operating parameters of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry. Analytical and Bioanalytical Chemistry, 2014, 406, 7497-7509.	1.9	26
34	Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: Assessment of plasma characteristics. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 94-95, 39-47.	1.5	26
35	Investigation of spectrochemical matrix effects in the liquid sampling-atmospheric pressure glow discharge source. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 100, 44-51.	1.5	8
36	Ambient desorption/ionization mass spectrometry using a liquid sampling–atmospheric glow discharge (LS-APGD) ionization source. Analytical and Bioanalytical Chemistry, 2013, 405, 8171-8184.	1.9	34

Benjamin T Manard

#	Article	IF	CITATIONS
37	Optimization of capillary-channeled polymer (C-CP) fiber stationary phase extractions of proteins from MALDI-MS suppressing media. Analytical Methods, 2013, 5, 3194.	1.3	3
38	Roles of electrode material and geometry in liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma emission spectroscopy. Microchemical Journal, 2012, 105, 48-55.	2.3	25
39	Capillary-Channeled Polymer (C-CP) Fibers as a Stationary Phase for Sample Clean-Up of Protein Solutions for Matrix-Assisted Laser/Desorption Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2012, 23, 1419-1423.	1.2	13
40	Capillary-Channeled Polymer (C-CP) Films as Processing Platforms for Protein Analysis by Matrix-Assisted Laser/Desorption Ionization Mass Spectrometry (MALDI-MS). Journal of the American Society for Mass Spectrometry, 2012, 23, 102-107.	1.2	2