Chao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2748968/publications.pdf

Version: 2024-02-01

567144 940416 4,312 16 15 16 citations h-index g-index papers 16 16 16 6303 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Stiff yet Rapidly Selfâ€Healable Elastomer in Harsh Aqueous Environments. Advanced Functional Materials, 2022, 32, .	7.8	41
2	A tough, elastic ion gel with adaptive interface for high performance and safe lithium metal anodes. Chemical Engineering Journal, 2022, 433, 133189.	6.6	3
3	Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments. Nature Communications, 2022, 13, 1338.	5.8	73
4	Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers. Nature Communications, 2022, 13, 2279.	5.8	35
5	Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes. Journal of Energy Chemistry, 2021, 62, 172-178.	7.1	26
6	Highly Transparent, Underwater Self-Healing, and Ionic Conductive Elastomer Based on Multivalent Ion–Dipole Interactions. Chemistry of Materials, 2020, 32, 6310-6317.	3.2	93
7	Self-healing electronic skins for aquatic environments. Nature Electronics, 2019, 2, 75-82.	13.1	424
8	Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium Metal Anode. Angewandte Chemie, 2018, 130, 1375-1379.	1.6	17
9	Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium Metal Anode. Angewandte Chemie - International Edition, 2018, 57, 1361-1365.	7.2	131
10	A Highly Stretchy, Transparent Elastomer with the Capability to Automatically Selfâ€Heal Underwater. Advanced Materials, 2018, 30, e1804602.	11.1	167
11	<i>In Situ</i> Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes. Chemistry of Materials, 2017, 29, 3572-3579.	3.2	105
12	A Transparent, Selfâ€Healing, Highly Stretchable Ionic Conductor. Advanced Materials, 2017, 29, 1605099.	11.1	447
13	A highly stretchable autonomous self-healing elastomer. Nature Chemistry, 2016, 8, 618-624.	6.6	1,133
14	High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. ACS Energy Letters, 2016, 1, 1247-1255.	8.8	281
15	Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors. Scientific Reports, 2015, 5, 17849.	1.6	66
16	An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology, 2012, 7, 825-832.	15.6	1,270