Oliver S Wenger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2748702/publications.pdf

Version: 2024-02-01

213 papers 9,543 citations

53 h-index 86 g-index

233 all docs 233 docs citations

times ranked

233

8305 citing authors

#	Article	IF	CITATIONS
1	Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
2	Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angewandte Chemie, 2022, 134, e202110491.	1.6	6
3	Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution. Water Research, 2022, 213, 118095.	5.3	16
4	High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. Journal of the American Chemical Society, 2022, 144, 963-976.	6.6	42
5	Luminescent chromium(0) and manganese(<scp>i</scp>) complexes. Dalton Transactions, 2022, 51, 1297-1302.	1.6	25
6	Oxidaseâ€Type Câ^'H/Câ^'H Coupling Using an Isoquinolineâ€Derived Organic Photocatalyst. Angewandte Chemie - International Edition, 2022, , .	7.2	14
7	Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry. Accounts of Chemical Research, 2022, 55, 1290-1300.	7.6	26
8	Deepâ€Red Luminescent Molybdenum(0) Complexes with Bi―and Tridentate Isocyanide Chelate Ligands. ChemPhotoChem, 2022, 6, .	1.5	9
9	Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. Journal of the American Chemical Society, 2022, 144, 9859-9873.	6.6	36
10	Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. Jacs Au, 2022, 2, 1488-1503.	3.6	44
11	Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Inorganic Chemistry, 2022, 61, 10533-10547.	1.9	7
12	Controlling Spinâ€Correlated Radical Pairs with Donor–Acceptor Dyads: A New Concept to Generate Reduced Metal Complexes for More Efficient Photocatalysis. Chemistry - A European Journal, 2021, 27, 4115-4123.	1.7	18
13	Photoactive Nickel Complexes in Crossâ€Coupling Catalysis. Chemistry - A European Journal, 2021, 27, 2270-2278.	1.7	67
14	Sensitization-initiated electron transfer <i>via</i> upconversion: mechanism and photocatalytic applications. Chemical Science, 2021, 12, 9922-9933.	3.7	50
15	A Photorobust Mo(0) Complex Mimicking [Os(2,2′-bipyridine) ₃] ²⁺ and Its Application in Red-to-Blue Upconversion. Journal of the American Chemical Society, 2021, 143, 1651-1663.	6.6	69
16	Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis. Jacs Au, 2021, 1, 819-832.	3.6	35
17	A Nearâ€Infraredâ€II Emissive Chromium(III) Complex. Angewandte Chemie - International Edition, 2021, 60, 23722-23728.	7.2	52
18	A Nearâ€Infraredâ€II Emissive Chromium(III) Complex. Angewandte Chemie, 2021, 133, 23915.	1.6	5

#	Article	IF	Citations
19	Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review. Energy & Energy & Samp; Fuels, 2021, 35, 18848-18856.	2.5	19
20	Manganese(i) complexes with metal-to-ligand charge transfer luminescence and photoreactivity. Nature Chemistry, 2021, 13, 956-962.	6.6	91
21	Pyrene-Decoration of a Chromium(0) Tris(diisocyanide) Enhances Excited State Delocalization: A Strategy to Improve the Photoluminescence of 3d ⁶ Metal Complexes. Journal of the American Chemical Society, 2021, 143, 15800-15811.	6.6	44
22	Luminescent First-Row Transition Metal Complexes. Jacs Au, 2021, 1, 1860-1876.	3.6	135
23	Rù⁄4cktitelbild: A Nearâ€Infraredâ€II Emissive Chromium(III) Complex (Angew. Chem. 44/2021). Angewandte Chemie, 2021, 133, 24116-24116.	1.6	0
24	Sensitized Photocatalytic CO2 Reduction With Earth Abundant 3d Metal Complexes Possessing Dipicolyl-Triazacyclononane Derivatives. Frontiers in Chemistry, 2021, 9, 751716.	1.8	6
25	Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis. European Journal of Organic Chemistry, 2020, 2020, 1288-1293.	1.2	22
26	Improved Photostability of a Cu I Complex by Macrocyclization of the Phenanthroline Ligands. Chemistry - A European Journal, 2020, 26, 3119-3128.	1.7	8
27	Recent progress in the development of transition-metal based photoredox catalysts. Coordination Chemistry Reviews, 2020, 405, 213129.	9.5	154
28	Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies. ACS Catalysis, 2020, 10, 210-215.	5 . 5	51
29	Light-Controlled Reactivity of Metal Complexes. Inorganic Chemistry, 2020, 59, 14627-14628.	1.9	3
30	Solvent-Mediated Activation/Deactivation of Photoinduced Electron-Transfer in a Molecular Dyad. Inorganic Chemistry, 2020, 59, 10430-10438.	1.9	4
31	Photo-triggered hydrogen atom transfer from an iridium hydride complex to unactivated olefins. Chemical Science, 2020, 11, 8582-8594.	3.7	16
32	Stimuliâ€Responsive Resorcin[4]arene Cavitands: Toward Visibleâ€Lightâ€Activated Molecular Grippers. Chemistry - A European Journal, 2020, 26, 11451-11461.	1.7	7
33	Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition. Angewandte Chemie, 2020, 132, 9746-9755.	1.6	13
34	UV Light Generation and Challenging Photoreactions Enabled by Upconversion in Water. Journal of the American Chemical Society, 2020, 142, 10468-10476.	6.6	79
35	A bright future for photosensitizers. Nature Chemistry, 2020, 12, 323-324.	6.6	41
36	Electrochemical and Photophysical Properties of Ruthenium(II) Complexes Equipped with Sulfurated Bipyridine Ligands. Inorganic Chemistry, 2020, 59, 4972-4984.	1.9	21

#	Article	IF	CITATIONS
37	Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition. Angewandte Chemie - International Edition, 2020, 59, 9659-9668.	7.2	59
38	Aryl dechlorination and defluorination with an organic super-photoreductant. Photochemical and Photobiological Sciences, 2020, 19, 1035-1041.	1.6	36
39	Excited-State Relaxation in Luminescent Molybdenum(0) Complexes with Isocyanide Chelate Ligands. Inorganics, 2020, 8, 14.	1.2	9
40	Multiâ€Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods. Angewandte Chemie - International Edition, 2020, 59, 10266-10284.	7.2	246
41	Multiphotonenâ€Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden. Angewandte Chemie, 2020, 132, 10350-10370.	1.6	44
42	Shortcuts for Electronâ€Transfer through the Secondary Structure of Helical Oligoâ€1,2â€Naphthylenes. Chemistry - A European Journal, 2019, 25, 16748-16754.	1.7	7
43	Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides. Journal of the American Chemical Society, 2019, 141, 14394-14402.	6.6	75
44	Four different emissions from a Pt(Bodipy)(PEt ₃) ₂ (S-Pyrene) dyad. Dalton Transactions, 2019, 48, 1171-1174.	1.6	13
45	Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 2122-2127.	6.6	120
46	Recent advances in bioinspired proton-coupled electron transfer. Dalton Transactions, 2019, 48, 5861-5868.	1.6	24
47	Directing energy transfer in Pt(bodipy)(mercaptopyrene) dyads. Dalton Transactions, 2019, 48, 11690-11705.	1.6	5
48	Stepwise Photoinduced Electron Transfer in a Tetrathiafulvaleneâ€Phenothiazineâ€Ruthenium Triad. European Journal of Inorganic Chemistry, 2019, 2019, 4256-4262.	1.0	6
49	Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis. Chemical Science, 2019, 10, 5624-5633.	3.7	19
50	Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Chemical Communications, 2019, 55, 4004-4014.	2.2	77
51	Reactivity control of a photocatalytic system by changing the light intensity. Chemical Science, 2019, 10, 11023-11029.	3.7	69
52	Electron Transfer across <i>o</i> -Phenylene Wires. Journal of Physical Chemistry A, 2019, 123, 96-102.	1.1	4
53	Fundamentally Different Distance Dependences of Electron-Transfer Rates for Low and High Driving Forces. Inorganic Chemistry, 2019, 58, 855-860.	1.9	16
54	Is Iron the New Ruthenium?. Chemistry - A European Journal, 2019, 25, 6043-6052.	1.7	201

#	Article	IF	Citations
55	Photophysics and Photoredox Catalysis of a Homoleptic Rhenium(I) Tris(diisocyanide) Complex. Inorganic Chemistry, 2018, 57, 2965-2968.	1.9	27
56	Elektronentransfer um eine molekulare Ecke. Angewandte Chemie, 2018, 130, 6806-6810.	1.6	2
57	Electron Transfer around a Molecular Corner. Angewandte Chemie - International Edition, 2018, 57, 6696-6700.	7.2	13
58	Controlling Second Coordination Sphere Effects in Luminescent Ruthenium Complexes by Means of External Pressure. Chemistry - A European Journal, 2018, 24, 7830-7833.	1.7	10
59	Exploiting Potential Inversion for Photoinduced Multielectron Transfer and Accumulation of Redox Equivalents in a Molecular Heptad. Journal of the American Chemical Society, 2018, 140, 5343-5346.	6.6	42
60	Frontispiece: Photoredox Catalysis with Metal Complexes Made from Earthâ€Abundant Elements. Chemistry - A European Journal, 2018, 24, .	1.7	0
61	Photoredoxâ€Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding. Chemistry - A European Journal, 2018, 24, 1431-1440.	1.7	15
62	Luminescent Ni(0) complexes. Coordination Chemistry Reviews, 2018, 359, 52-56.	9.5	23
63	Chiral macrocyclic terpyridine complexes. Chemical Science, 2018, 9, 3837-3843.	3.7	17
64	Photoredox Catalysis with Metal Complexes Made from Earthâ€Abundant Elements. Chemistry - A European Journal, 2018, 24, 2039-2058.	1.7	271
65	Circular Photoinduced Electron Transfer in a Donorâ€Acceptorâ€Acceptor Triad. Angewandte Chemie - International Edition, 2018, 57, 841-845.	7.2	12
66	Reductive Amination by Photoredox Catalysis and Polarityâ€Matched Hydrogen Atom Transfer. Angewandte Chemie - International Edition, 2018, 57, 2469-2473.	7.2	86
67	Reduktive Aminierung durch Photoredoxkatalyse $\tilde{A}^{1}\!\!/\!\!4$ ber polarit \tilde{A} tsangepassten Wasserstoffatomtransfer. Angewandte Chemie, 2018, 130, 2494-2498.	1.6	27
68	$R\tilde{A}^{1}\!\!/\!\!$ cktitelbild: Elektronentransfer um eine molekulare Ecke (Angew. Chem. 22/2018). Angewandte Chemie, 2018, 130, 6818-6818.	1.6	0
69	Kreisförmiger lichtinduzierter Elektronentransfer in einer Donor―Akzeptorâ€Akzeptorâ€Triade. Angewandte Chemie, 2018, 130, 850-855.	1.6	5
70	Photoactive Complexes with Earth-Abundant Metals. Journal of the American Chemical Society, 2018, 140, 13522-13533.	6.6	369
71	Influence of Mesoionic Carbenes on Electro- and Photoactive Ru and Os Complexes: A Combined (Spectro-)Electrochemical, Photochemical, and Computational Study. Inorganic Chemistry, 2018, 57, 13973-13984.	1.9	36
72	Enantioselective synthesis of amines by combining photoredox and enzymatic catalysis in a cyclic reaction network. Chemical Science, 2018, 9, 5052-5056.	3.7	113

#	Article	IF	Citations
73	Mixedâ€Valent Molecular Triple Deckers. Angewandte Chemie - International Edition, 2018, 57, 11688-11691.	7.2	9
74	Mixedâ€Valent Molecular Triple Deckers. Angewandte Chemie, 2018, 130, 11862-11865.	1.6	4
75	Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chemical Science, 2018, 9, 6670-6678.	3.7	90
76	Charge Accumulation and Multiâ€Electron Photoredox Chemistry with a Sensitizer–Catalyst–Sensitizer Triad. Chemistry - A European Journal, 2018, 24, 14084-14087.	1.7	20
77	Light-actuated resorcin[4]arene cavitands. Tetrahedron, 2018, 74, 5615-5626.	1.0	7
78	Photoinduced electron transfer in a triarylamine-organoboron-Ru(2,2′-bipyridine)32+ compound. Comptes Rendus Chimie, 2017, 20, 230-236.	0.2	0
79	Homoleptic complexes of a porphyrinatozinc(ii)-2,2′:6′,2′′-terpyridine ligand. Photochemical and Photobiological Sciences, 2017, 16, 585-595.	1.6	0
80	Electron Accumulation on Naphthalene Diimide Photosensitized by [Ru(2,2′-Bipyridine) ₃] ²⁺ . Inorganic Chemistry, 2017, 56, 2432-2439.	1.9	34
81	Ruthenium(II)–Pyridylimidazole Complexes as Photoreductants and PCET Reagents. European Journal of Inorganic Chemistry, 2017, 2017, 609-615.	1.0	13
82	Exceptionally Longâ€Lived Photodriven Multiâ€Electron Storage without Sacrificial Reagents. Chemistry - A European Journal, 2017, 23, 10808-10814.	1.7	13
83	lsocyanidâ€Komplexe von Cr ⁰ , Mo ⁰ und W ⁰ als Leuchtstoffe und Photosensibilisatoren mit langlebigen angeregten ZustÃnden. Angewandte Chemie, 2017, 129, 5770-5776.	1.6	24
84	Intramolecular Light-Driven Accumulation of Reduction Equivalents by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2017, 139, 5225-5232.	6.6	59
85	Luminescent Ni ⁰ Diisocyanide Chelates as Analogues of Cu ^I Diimine Complexes. Chemistry - A European Journal, 2017, 23, 8577-8580.	1.7	33
86	Chromium(0), Molybdenum(0), and Tungsten(0) Isocyanide Complexes as Luminophores and Photosensitizers with Longâ€Lived Excited States. Angewandte Chemie - International Edition, 2017, 56, 5676-5682.	7.2	86
87	Directing Energy Transfer in Panchromatic Platinum Complexes for Dual Vis–Near-IR or Dual Visible Emission from ΃-Bonded BODIPY Dyes. Inorganic Chemistry, 2017, 56, 914-930.	1.9	13
88	A Tris(diisocyanide)chromium(0) Complex Is a Luminescent Analog of Fe(2,2′-Bipyridine) ₃ ²⁺ . Journal of the American Chemical Society, 2017, 139, 985-992.	6.6	141
89	Streptavidin as a Scaffold for Lightâ€Induced Longâ€Lived Charge Separation. Chemistry - A European Journal, 2017, 23, 18019-18024.	1.7	3
90	Luminescent complexes made from chelating isocyanide ligands and earth-abundant metals. Dalton Transactions, 2017, 46, 15175-15177.	1.6	32

#	Article	IF	CITATIONS
91	Photoinduced Electron Transfer Coupled to Donor Deprotonation and Acceptor Protonation in a Molecular Triad Mimicking Photosystem II. Journal of the American Chemical Society, 2017, 139, 13308-13311.	6.6	54
92	Chromium complexes for luminescence, solar cells, photoredox catalysis, upconversion, and phototriggered NO release. Chemical Science, 2017, 8, 7359-7367.	3.7	95
93	Luminescent NiO Diisocyanide Chelates as Analogues of Cul Diimine Complexes. Chemistry - A European Journal, 2017, 23, 8541-8541.	1.7	2
94	Pumpâ€Pumpâ€Probe Spectroscopy of a Molecular Triad Monitoring Detrimental Processes for Photoinduced Charge Accumulation. Helvetica Chimica Acta, 2017, 100, e1600283.	1.0	21
95	Lightâ€Driven Electron Accumulation in a Molecular Pentad. Angewandte Chemie - International Edition, 2016, 55, 9407-9410.	7.2	63
96	Increasing Electronâ€Transfer Rates with Increasing Donor–Acceptor Distance. Angewandte Chemie - International Edition, 2016, 55, 815-819.	7.2	55
97	From Photodriven Charge Accumulation to Fueling Enzyme Cascades in Molecular Factories. Chimia, 2016, 70, 395-397.	0.3	0
98	Proton coupled electron transfer from the excited state of a ruthenium(ii) pyridylimidazole complex. Physical Chemistry Chemical Physics, 2016, 18, 11374-11382.	1.3	32
99	Reaction Rate Maxima at Large Distances between Reactants. Chimia, 2016, 70, 177-181.	0.3	2
100	A Molybdenum(0) Isocyanide Analogue of Ru(2,2′â€Bipyridine) ₃ ²⁺ : A Strong Reductant for Photoredox Catalysis. Angewandte Chemie - International Edition, 2016, 55, 11247-11250.	7.2	111
101	Unusual distance dependences of electron transfer rates. Physical Chemistry Chemical Physics, 2016, 18, 18657-18664.	1.3	28
102	Light-driven electron injection from a biotinylated triarylamine donor to [Ru(diimine) ₃] ²⁺ -labeled streptavidin. Organic and Biomolecular Chemistry, 2016, 14, 7197-7201.	1.5	9
103	Ein MolybdÃn(0)â€lsocyanidâ€Komplex als Ru(2,2′â€Bipyridin) ₃ ²⁺ â€Analogon: ein starkes Reduktionsmittel für die Photoredoxkatalyse. Angewandte Chemie, 2016, 128, 11413-11417.	1.6	28
104	Lichtgetriebene Elektronenakkumulation in einer molekularen Pentade. Angewandte Chemie, 2016, 128, 9553-9556.	1.6	18
105	Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches. Journal of Physical Chemistry Letters, 2016, 7, 2470-2477.	2.1	12
106	N -Heterocyclic carbene ligands bearing a naphthoquinone appendage: Synthesis and coordination chemistry. Polyhedron, 2016, 103, 261-266.	1.0	2
107	Electron Transfer Rate Maxima at Large Donor–Acceptor Distances. Journal of the American Chemical Society, 2016, 138, 1349-1358.	6.6	7 5
108	Improved light absorbance does not lead to better DSC performance: studies on a ruthenium porphyrin–terpyridine conjugate. RSC Advances, 2016, 6, 15370-15381.	1.7	4

#	Article	IF	CITATIONS
109	Photoinduced Electron Transfer in an Anthraquinone–[Ru(bpy) ₃] ²⁺ –Oligotriarylamine–[Ru(bpy) ₃] ^{Pentad. Inorganic Chemistry, 2016, 55, 2894-2899.}	2 1.9 /sup>	â €' ∕Anthra <mark>q</mark>
110	Charge Transfer Pathways in Three Isomers of Naphthalene-Bridged Organic Mixed Valence Compounds. Journal of Organic Chemistry, 2016, 81, 595-602.	1.7	34
111	Photoredox Properties of Homoleptic d6Metal Complexes with the Electron-Rich 4,4′,5,5′-Tetramethoxy-2,2′-bipyridine Ligand. European Journal of Inorganic Chemistry, 2015, 2015, 4666-4677.	1.0	11
112	Fluoride binding to an organoboron wire controls photoinduced electron transfer. Chemical Science, 2015, 6, 3582-3592.	3.7	25
113	Photoinduced charge accumulation by metal ion-coupled electron transfer. Physical Chemistry Chemical Physics, 2015, 17, 24001-24010.	1.3	20
114	Dependence of Reaction Rates for Bidirectional PCET on the Electron Donor–Electron Acceptor Distance in Phenol–Ru(2,2′-Bipyridine) ₃ ²⁺ Dyads. Journal of Physical Chemistry B, 2015, 119, 2263-2273.	1.2	18
115	Tetramethoxybenzene is a Good Building Block for Molecular Wires: Insights from Photoinduced Electron Transfer. Journal of Physical Chemistry A, 2015, 119, 5676-5684.	1.1	13
116	Photoinduced PCET in Ruthenium–Phenol Systems: Thermodynamic Equivalence of Uni- and Bidirectional Reactions. Inorganic Chemistry, 2015, 54, 3680-3687.	1.9	46
117	Charge Transfer Emission in Oligotriarylamine–Triarylborane Compounds. Journal of Organic Chemistry, 2015, 80, 4097-4107.	1.7	48
118	Photoinduced Charge Accumulation in Molecular Systems. Chimia, 2015, 69, 17.	0.3	20
119	Proton-coupled electron transfer with photoexcited ruthenium(II), rhenium(I), and iridium(III) complexes. Coordination Chemistry Reviews, 2015, 282-283, 150-158.	9.5	70
120	Charge Delocalization in an Organic Mixed Valent Bithiophene Is Greater Than in a Structurally Analogous Biselenophene. Journal of Physical Chemistry A, 2014, 118, 11293-11303.	1.1	20
121	Distance Dependence of Bidirectional Concerted Proton–Electron Transfer in Phenolâ€Ru(2,2′â€bipyridine) ₃ ²⁺ Dyads. Chemistry - A European Journal, 2014, 20, 4098-4104.	1.7	31
122	Long-range proton-coupled electron transfer in phenol–Ru(2,2′-bipyrazine)32+ dyads. Physical Chemistry Chemical Physics, 2014, 16, 3617.	1.3	24
123	Electronic coupling mediated by furan, thiophene, selenophene and tellurophene in a homologous series of organic mixed valence compounds. Chemical Communications, 2014, 50, 10883.	2.2	20
124	Photoinduced Electron Transfer in Rhenium(I)–Oligotriarylamine Molecules. Inorganic Chemistry, 2014, 53, 11075-11085.	1.9	17
125	Photochemistry between a ruthenium(ii) pyridylimidazole complex and benzoquinone: simple electron transferversusproton-coupled electron transfer. Photochemical and Photobiological Sciences, 2013, 12, 254-261.	1.6	11
126	Vapochromism in Organometallic and Coordination Complexes: Chemical Sensors for Volatile Organic Compounds. Chemical Reviews, 2013, 113, 3686-3733.	23.0	603

#	Article	IF	CITATIONS
127	Proton-Coupled Electron Transfer with Photoexcited Metal Complexes. Accounts of Chemical Research, 2013, 46, 1517-1526.	7.6	147
128	Gold Complexes with Tridentate Cyclometalating and NHC Ligands: A Search for New Photoluminescent Gold(III) Compounds. Organometallics, 2013, 32, 1807-1814.	1.1	60
129	Photoinduced electron tunneling between randomly dispersed donors and acceptors in frozen glasses and other rigid matrices. Physical Chemistry Chemical Physics, 2013, 15, 10673.	1.3	7
130	Photoacid Behavior versus Proton-Coupled Electron Transfer in Phenol–Ru(bpy) ₃ ²⁺ Dyads. Journal of Physical Chemistry A, 2013, 117, 5726-5733.	1.1	29
131	Mechanistic Diversity in Proton-Coupled Electron Transfer between Thiophenols and Photoexcited [Ru(2,2′-Bipyrazine) ₃] ²⁺ . Journal of Physical Chemistry Letters, 2013, 4, 2535-2539.	2.1	33
132	Photoinduced Electron and Proton Transfer with Metal Complexes and Organic Molecules. Chimia, 2013, 67, 337-339.	0.3	0
133	Electron Transfer between Hydrogenâ€Bonded Pyridylphenols and a Photoexcited Rhenium(I) Complex. ChemPhysChem, 2013, 14, 1168-1176.	1.0	20
134	Hydrogen-Bond Strengthening upon Photoinduced Electron Transfer in Ruthenium–Anthraquinone Dyads Interacting with Hexafluoroisopropanol or Water. Journal of Physical Chemistry A, 2012, 116, 3347-3358.	1.1	40
135	Photoinduced electron transfer in covalent ruthenium–anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor–bridge energy gap. Physical Chemistry Chemical Physics, 2012, 14, 2685.	1.3	35
136	Charge Delocalization in a Homologous Series of $\hat{l}\pm,\hat{l}\pm\hat{a}\in^2$ -Bis(dianisylamino)-Substituted Thiophene Monocations. Journal of Physical Chemistry A, 2012, 116, 7345-7352.	1.1	29
137	Ruthenium-Phenothiazine Electron Transfer Dyad with a Photoswitchable Dithienylethene Bridge: Flash-Quench Studies with Methylviologen. Inorganic Chemistry, 2012, 51, 4335-4342.	1.9	26
138	Kinetic Isotope Effects in Reductive Excited-State Quenching of Ru(2,2′-bipyrazine) ₃ ²⁺ by Phenols. Journal of Physical Chemistry Letters, 2012, 3, 70-74.	2.1	58
139	Hydrogen-Bonding Effects on the Formation and Lifetimes of Charge-Separated States in Molecular Triads. Journal of Physical Chemistry A, 2012, 116, 8159-8168.	1.1	49
140	A Triarylamine–Triarylborane Dyad with a Photochromic Dithienylethene Bridge. Journal of Organic Chemistry, 2012, 77, 6545-6552.	1.7	47
141	Influence of Donor–Acceptor Distance Variation on Photoinduced Electron and Proton Transfer in Rhenium(I)–Phenol Dyads. Journal of the American Chemical Society, 2012, 134, 12844-12854.	6.6	64
142	Proton-Coupled Electron Transfer between 4-Cyanophenol and Photoexcited Rhenium(I) Complexes with Different Protonatable Sites. Inorganic Chemistry, 2012, 51, 8275-8283.	1.9	44
143	Photoinduced Electron Transfer in Linear Triarylamine–Photosensitizer–Anthraquinone Triads with Ruthenium(II), Osmium(II), and Iridium(III). Inorganic Chemistry, 2012, 51, 6333-6344.	1.9	63
144	Photoswitchable mixed valence. Chemical Society Reviews, 2012, 41, 3772.	18.7	82

#	Article	IF	Citations
145	Large Increase of the Lifetime of a Chargeâ€Separated State in a Molecular Triad Induced by Hydrogenâ€Bonding Solvent. Chemistry - A European Journal, 2012, 18, 6443-6447.	1.7	41
146	A New Dimension in Cyclic Coinage Metal Pyrazolates: Decoration with a Second Ring of Coinage Metals Supported by Inter-ring Metallophilic Interactions. Journal of the American Chemical Society, 2012, 134, 2938-2941.	6.6	56
147	Luminescent cyclometalated gold(iii) complexes. Dalton Transactions, 2011, 40, 12409.	1.6	131
148	Microsecond charge recombination in a linear triarylamine–Ru(bpy)32+–anthraquinone triad. Chemical Communications, 2011, 47, 10145.	2.2	63
149	Organic Mixed Valence. Chemical Reviews, 2011, 111, 5138-5178.	23.0	332
150	How Donorâ^'Bridgeâ^'Acceptor Energetics Influence Electron Tunneling Dynamics and Their Distance Dependences. Accounts of Chemical Research, 2011, 44, 25-35.	7.6	182
151	Photoswitchable Organic Mixed Valence in Dithienylcyclopentene Systems with Tertiary Amine Redox Centers. Journal of the American Chemical Society, 2011, 133, 17027-17036.	6.6	54
152	Hole Tunneling and Hopping in a Ru(bpy)32+-Phenothiazine Dyad with a Bridge Derived from oligo-p-Phenylene. Inorganic Chemistry, 2011, 50, 10901-10907.	1.9	13
153	Multistage Complexation of Fluoride Ions by a Fluorescent Triphenylamine Bearing Three Dimesitylboryl Groups: Controlling Intramolecular Charge Transfer. Journal of Organic Chemistry, 2011, 76, 9081-9085.	1.7	45
154	Photoinduced electron and energy transfer in phenylene oligomers. Chemical Society Reviews, 2011, 40, 3538.	18.7	103
155	Barrier heights in long-range electron tunneling. Inorganica Chimica Acta, 2011, 374, 3-9.	1.2	20
156	Protonâ€Coupled Electron Transfer Originating from Excited States of Luminescent Transitionâ€Metal Complexes. Chemistry - A European Journal, 2011, 17, 11692-11702.	1.7	73
157	Bigger, better, faster: molecular shuttles with sterically non-hindering biisoquinoline chelates. Supramolecular Chemistry, 2011, 23, 42-52.	1.5	8
158	The magic effect of endocyclic but non-sterically hindering biisoquinoline chelates: From fast-moving molecular shuttles to [3]rotaxanes. Coordination Chemistry Reviews, 2010, 254, 1748-1759.	9.5	51
159	Photoinduced Processes in Fluoreneâ€Bridged Rhenium–Phenothiazine Dyads – Comparison of Electron Transfer Across Fluorene, Phenylene, and Xylene Bridges. European Journal of Inorganic Chemistry, 2010, 2010, 4843-4850.	1.0	30
160	Supramolecular and Intramolecular Energy Transfer with Ruthenium–Anthracene Donor–Acceptor Couples: Salt Bridge versus Covalent Bond. European Journal of Inorganic Chemistry, 2010, 2010, 5509-5516.	1.0	19
161	Spectroscopy and photoredox properties of soluble platinum(II) alkynyl complexes. Polyhedron, 2010, 29, 857-863.	1.0	13
162	Importance of covalence, conformational effects and tunneling-barrier heights for long-range electron transfer: Insights from dyads with oligo-p-phenylene, oligo-p-xylene and oligo-p-dimethoxybenzene bridges. Coordination Chemistry Reviews, 2010, 254, 2584-2592.	9.5	69

#	Article	IF	CITATIONS
163	Accelerated hole transfer across a molecular double barrier. Chemical Communications, 2010, 46, 7034.	2.2	21
164	Tuning the Rates of Longâ€Range Charge Transfer across Phenylene Wires. ChemPhysChem, 2009, 10, 1203-1206.	1.0	46
165	Conformational Effects on Longâ€Range Electron Transfer: Comparison of Oligoâ€ <i>p</i> â€phenylene and Oligoâ€ <i>p</i> â€xylene Bridges. European Journal of Inorganic Chemistry, 2009, 2009, 3778-3790.	1.0	60
166	Cyclometalated Iridium(III) Complexes as Photosensitizers for Longâ€Range Electron Transfer: Occurrence of a Coulomb Barrier. European Journal of Inorganic Chemistry, 2009, 2009, 4850-4859.	1.0	102
167	Variation of charge transfer kinetics in structurally closely related dyads with rhenium photosensitizers. Inorganica Chimica Acta, 2009, 362, 3415-3420.	1.2	7
168	Long-range electron transfer in artificial systems with d6 and d8 metal photosensitizers. Coordination Chemistry Reviews, 2009, 253, 1439-1457.	9.5	104
169	Tunneling Barrier Effects on Photoinduced Charge Transfer through Covalent Rigid Rod-Like Bridges. Inorganic Chemistry, 2009, 48, 671-680.	1.9	67
170	Chemistry with Photons, Protons, and Electrons. Chimia, 2009, 63, 49-53.	0.3	9
171	Electron Tunneling through Oligo-p-xylene Bridges. Inorganic Chemistry, 2008, 47, 9081-9084.	1.9	59
172	Fe(ii), Ru(ii) and Re(i) complexes of endotopic, sterically non-hindering, U-shaped 8,8′-disubstituted-3,3′-biisoquinoline ligands: syntheses and spectroscopic properties. Dalton Transactions, 2008, , 491-498.	1.6	7
173	Energy transfer from rhenium(i) complexes to covalently attached anthracenes and phenanthrenes. Dalton Transactions, 2008, , 6311.	1.6	28
174	Proton-coupled electron transfer from a luminescent excited state. Chemical Communications, 2008, , 4267.	2.2	69
175	Tunneling Energy Effects in Photoinduced Charge and Energy Transfer. Chimia, 2007, 61, 823-825.	0.3	12
176	Threeâ€Component Entanglements Consisting of Three Crescentâ€Shaped Bidentate Ligands Coordinated to an Octahedral Metal Centre. Chemistry - A European Journal, 2007, 13, 8749-8753.	1.7	20
177	Macrocycles Incorporating an Endocyclic But Nonâ€Stericallyâ€Hindering Chelate: Synthesis and Structural Studies. Helvetica Chimica Acta, 2007, 90, 1439-1446.	1.0	18
178	Redâ€ŧoâ€Yellow Pressureâ€Induced Phase Transition in Pt(bpy)Cl ₂ : Spectroscopic Study Supported by DFT Calculations. European Journal of Inorganic Chemistry, 2007, 2007, 5735-5742.	1.0	14
179	A New Family of Biisoquinoline Chelates. European Journal of Organic Chemistry, 2007, 2007, 125-135.	1,2	21
180	Sterically non-hindering endocyclic ligands of the bi-isoquinoline family. Chemical Communications, 2006, , 171-173.	2.2	107

#	Article	IF	Citations
181	Long-Range Electron Tunneling in Aqueous and Organic Glasses. Chimia, 2005, 59, 94-96.	0.3	12
182	Visible Ni2+ upconversion luminescence in Ni2+, Yb3+ co-doped CsCdBr3. Chemical Physics Letters, 2005, 401, 492-496.	1.2	13
183	Electron Tunneling Through Organic Molecules in Frozen Glasses. Science, 2005, 307, 99-102.	6.0	149
184	Rhenium(I) tricarbonyl complexes with photoisomerizable ligands. Polyhedron, 2004, 23, 2955-2958.	1.0	30
185	Pressure dependence of Pt(2,2′-bipyridine)Cl2 luminescence. The red complex converts to a yellow form at 17.5 kbar. Chemical Physics Letters, 2004, 384, 190-192.	1.2	24
186	Photoswitchable Luminescence of Rhenium(I) Tricarbonyl Diimines. Inorganic Chemistry, 2004, 43, 2043-2048.	1.9	132
187	Crystal Field Effects on the Optical Absorption and Luminescence Properties of Ni2+-Doped Chlorides and Bromides: Crossover in the Emitting Higher Excited State ChemInform, 2003, 34, no.	0.1	0
188	Broadband green upconversion luminescence of Ni2+ in KZnF3. Journal of Luminescence, 2003, 102-103, 380-385.	1.5	28
189	Near-infrared to visible photon up-conversion in V3+, Re4+ co-doped Cs2NaYCl6. Journal of Luminescence, 2003, 102-103, 48-53.	1.5	5
190	Excited-state absorption of Cr3+ in Cs2NaScCl6. Journal of Chemical Physics, 2002, 117, 909-913.	1.2	6
191	Luminescence upconversion under hydrostatic pressure in the3d-metal systemsTi2+:NaClandNi2+:CsCdCl3. Physical Review B, 2002, 65, .	1.1	15
192	Broadband near-Infrared Sensitization of Visible Upconversion Luminescence in V3+and Mo3+Co-Doped Cs2NaYCl6. Journal of Physical Chemistry B, 2002, 106, 10011-10019.	1.2	20
193	Crystal Field Effects on the Optical Absorption and Luminescence Properties of Ni2+-Doped Chlorides and Bromides:Â Crossover in the Emitting Higher Excited State. Inorganic Chemistry, 2002, 41, 5968-5977.	1.9	27
194	Effects of High Pressure on the Luminescence and Upconversion Properties of Ti2+-Doped NaCl. Journal of Physical Chemistry B, 2002, 106, 10082-10088.	1,2	8
195	Upconversion luminescence in Yb[sup 3+] doped CsMnCl[sub 3]: Spectroscopy, dynamics, and mechanisms. Journal of Chemical Physics, 2002, 116, 5196.	1.2	43
196	Luminescence Upconversion Under High Pressure in Ni 2+ Doped CsCdCl 3. High Pressure Research, 2002, 22, 57-62.	0.4	12
197	Chemical tuning of transition metal upconversion properties. Journal of Alloys and Compounds, 2002, 341, 342-348.	2.8	13
198	Inorganic solid state optical materials:. Current Opinion in Solid State and Materials Science, 2002, 6, 487-493.	5.6	11

#	Article	IF	CITATIONS
199	Luminescence spectroscopy of V3+-doped Cs2NaYCl6 under high pressure. Chemical Physics Letters, 2002, 354, 75-81.	1.2	14
200	Near-infrared-to-visible photon upconversion process induced by exchange interactions inYb3+-dopedRbMnCl3. Physical Review B, 2001, 63, .	1.1	48
201	Green and Red Light Emission by Upconversion from the near-IR in Yb3+ Doped CsMnBr3. Inorganic Chemistry, 2001, 40, 4534-4542.	1.9	55
202	Photon Upconversion Properties of Ni2+in Magnetic and Nonmagnetic Chloride Host Lattices. Inorganic Chemistry, 2001, 40, 157-164.	1.9	30
203	Dual Luminescence and Excited-State Dynamics in Ti2+Doped NaCl. Journal of Physical Chemistry B, 2001, 105, 4181-4187.	1.2	7
204	Chemical Tuning of the Photon Upconversion Properties in Ti2+-Doped Chloride Host Lattices. Inorganic Chemistry, 2001, 40, 5747-5753.	1.9	32
205	Upconversion in a divalent rare earth ion: optical absorption and luminescence spectroscopy of Tm2+ doped SrCl2. Journal of Luminescence, 2001, 94-95, 101-105.	1.5	22
206	Optical spectroscopy of CrCl63â^' doped Cs2NaScCl6: Broadband near-infrared luminescence and Jahn-Teller effect. Journal of Chemical Physics, 2001, 114, 5832-5841.	1.2	51
207	Influence of hydrostatic pressure on the Jahn–Teller effect in the 4T2g excited state of CrCl63â^' doped Cs2NaScCl6. Journal of Chemical Physics, 2001, 115, 3819-3826.	1.2	48
208	Optical spectroscopy of theNi2+-doped layer perovskitesRb2MCl4(M=Cd,Mn):Effects ofNi2+â°Mn2+exchange interactions on theNi2+absorption, luminescence, and upconversion properties. Physical Review B, 2001, 64, .	1.1	20
209	New photon upconversion processes in Yb3+ doped CsMnCl3 and RbMnCl3. Chemical Physics Letters, 2000, 320, 639-644.	1.2	57
210	Site-selective yellow to violet and near-infrared to green upconversion inBaLu2F8:Nd3+. Physical Review B, 2000, 61, 16530-16537.	1.1	38
211	Chemical Modification of Transition Metal Upconversion Properties:Â Exchange Enhancement of Ni2+Upconversion Rates in Ni2+:RbMnCl3. Journal of the American Chemical Society, 2000, 122, 7408-7409.	6.6	23
212	Site-selective optical spectroscopy and upconversion mechanisms of the laser materialBaLu2F8:Er3+. Physical Review B, 1999, 60, 5312-5320.	1.1	23
213	Oxidaseâ€Type Câ^'H/Câ^'H Coupling Using an Isoquinolineâ€Derived Organic Photocatalyst. Angewandte Chemie, 0, , .	1.6	0