
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2748471/publications.pdf Version: 2024-02-01

LUISA REACCI

#	Article	IF	CITATIONS
1	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	28.9	180
2	Identification of a Neutralizing Epitope on TOSV Gn Glycoprotein. Vaccines, 2021, 9, 924.	4.4	3
3	An antimicrobial molecule mitigates signs of sepsis in vivo and eradicates infections from lung tissue. FASEB Journal, 2020, 34, 192-207.	0.5	10
4	Molecular definition of the interaction between a tumor-specific tetrabranched peptide and LRP6 receptor. Amino Acids, 2020, 52, 915-924.	2.7	3
5	Antibacterial and Anti-Inflammatory Activity of an Antimicrobial Peptide Synthesized with D Amino Acids. Antibiotics, 2020, 9, 840.	3.7	18
6	Endocytosis and Trafficking of Heparan Sulfate Proteoglycans in Triple-Negative Breast Cancer Cells Unraveled with a Polycationic Peptide. International Journal of Molecular Sciences, 2020, 21, 8282.	4.1	5
7	Heparan Sulfate Proteoglycans Can Promote Opposite Effects on Adhesion and Directional Migration of Different Cancer Cells. Journal of Medicinal Chemistry, 2020, 63, 15997-16011.	6.4	7
8	A New NT4 Peptide-Based Drug Delivery System for Cancer Treatment. Molecules, 2020, 25, 1088.	3.8	17
9	<p>Antimicrobial Peptide-Loaded Nanoparticles as Inhalation Therapy for Pseudomonas aeruginosa Infections</p> . International Journal of Nanomedicine, 2020, Volume 15, 1117-1128.	6.7	62
10	Unraveling Heparan Sulfate Proteoglycan Binding Motif for Cancer Cell Selectivity. Frontiers in Oncology, 2019, 9, 843.	2.8	10
11	NMR Study of the Secondary Structure and Biopharmaceutical Formulation of an Active Branched Antimicrobial Peptide. Molecules, 2019, 24, 4290.	3.8	5
12	Near-infrared quantum dots labelled with a tumor selective tetrabranched peptide for in vivo imaging. Journal of Nanobiotechnology, 2018, 16, 21.	9.1	39
13	Peptides and small molecules blocking the CXCR4/CXCL12 axis overcome bone marrow‑induced chemoresistance in acute leukemias. Oncology Reports, 2018, 41, 312-324.	2.6	12
14	Branched peptides as bioactive molecules for drug design. Peptide Science, 2018, 110, e24089.	1.8	15
15	Heterologous Prime-Boost Combinations Highlight the Crucial Role of Adjuvant in Priming the Immune System. Frontiers in Immunology, 2018, 9, 380.	4.8	18
16	The GAG-specific branched peptide NT4 reduces angiogenesis and invasiveness of tumor cells. PLoS ONE, 2018, 13, e0194744.	2.5	9
17	Synergistic activity profile of an antimicrobial peptide against multidrugâ€resistant and extensively drugâ€resistant strains of Gramâ€negative bacterial pathogens. Journal of Peptide Science, 2017, 23, 329-333.	1.4	36
18	Investigations into the killing activity of an antimicrobial peptide active against extensively antibiotic-resistant K. pneumon iae and P. aeruginosa. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1796-1804.	2.6	21

#	Article	IF	CITATIONS
19	Coupling to a cancer-selective heparan-sulfate-targeted branched peptide can by-pass breast cancer cell resistance to methotrexate. Oncotarget, 2017, 8, 76141-76152.	1.8	23
20	Abstract 1153: Heparan sulfate proteoglycans as novel target in cancer precise therapy. , 2017, , .		0
21	Exploiting Freeâ€Energy Minima to Design Novel EphA2 Protein–Protein Antagonists: From Simulation to Experiment and Return. Chemistry - A European Journal, 2016, 22, 8048-8052.	3.3	15
22	In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Scientific Reports, 2016, 6, 26077.	3.3	63
23	Insights into the role of sulfated glycans in cancer cell adhesion and migration through use of branched peptide probe. Scientific Reports, 2016, 6, 27174.	3.3	28
24	Oxidative stress-induced apoptosis in peripheral blood lymphocytes from patients with POLG-related disorders. Journal of the Neurological Sciences, 2016, 368, 359-368.	0.6	6
25	Immunomodulatory and Anti-inflammatory Activity in Vitro and in Vivo of a Novel Antimicrobial Candidate. Journal of Biological Chemistry, 2016, 291, 25742-25748.	3.4	38
26	Antimicrobial activity of levofloxacin – M33 peptide conjugation or combination. MedChemComm, 2016, 7, 258-262.	3.4	12
27	Models of In-Vivo Bacterial Infections for the Development of Antimicrobial Peptide-based Drugs. Current Topics in Medicinal Chemistry, 2016, 17, 613-619.	2.1	16
28	Tumor-selective peptide-carrier delivery of Paclitaxel increases in vivo activity of the drug. Scientific Reports, 2015, 5, 17736.	3.3	38
29	Neurotensin Branched Peptide as a Tumor-Targeting Agent for Human Bladder Cancer. BioMed Research International, 2015, 2015, 1-7.	1.9	24
30	Analysis of opa1 isoforms expression and apoptosis regulation in autosomal dominant optic atrophy (ADOA) patients with mutations in the opa1 gene. Journal of the Neurological Sciences, 2015, 351, 99-108.	0.6	8
31	Abstract 5350: Targeting Heparan Sulfated Proteoglycans by branched peptides for selective cancer imaging and therapy. , 2015, , .		0
32	A Novel Phage-Library-Selected Peptide Inhibits Human TNF-α Binding to Its Receptors. Molecules, 2014, 19, 7255-7268.	3.8	6
33	Site-specific pegylation of an antimicrobial peptide increases resistance to Pseudomonas aeruginosa elastase. Amino Acids, 2014, 46, 1403-1407.	2.7	30
34	Cancer Selectivity of Tetrabranched Neurotensin Peptides Is Generated by Simultaneous Binding to Sulfated Glycosaminoglycans and Protein Receptors. Journal of Medicinal Chemistry, 2013, 56, 5009-5018.	6.4	27
35	Nanoparticles exposing neurotensin tumorâ€specific drivers. Journal of Peptide Science, 2013, 19, 198-204.	1.4	20
36	The Development of Antimicrobial Peptides as New Antibacterial Drugs. Current Protein and Peptide Science, 2013, 14, 641-649.	1.4	46

#	Article	IF	CITATIONS
37	Abstract 5625: Targeting different LRP receptors and sulfated proteoglycan by branched neurotensin provide high cancer selectivity , 2013, , .		0
38	Branched peptides as novel tumor-targeting agents for bladder cancer. Expert Review of Anticancer Therapy, 2012, 12, 699-701.	2.4	8
39	Isomerization of an Antimicrobial Peptide Broadens Antimicrobial Spectrum to Gram-Positive Bacterial Pathogens. PLoS ONE, 2012, 7, e46259.	2.5	60
40	Structure–Activity Relationships and Mechanism of Action of Eph–ephrin Antagonists: Interaction of Cholanic Acid with the EphA2 Receptor. ChemMedChem, 2012, 7, 1071-1083.	3.2	31
41	Surface Interactome in Streptococcus pyogenes. Molecular and Cellular Proteomics, 2012, 11, M111.015206.	3.8	9
42	Efficacy and toxicity of the antimicrobial peptide M33 produced with different counter-ions. Amino Acids, 2012, 43, 467-473.	2.7	22
43	Functional Characterization of a Small-Molecule Inhibitor of the DKK1-LRP6 Interaction. , 2012, 2012, 1-9.		26
44	878 BRANCHED PEPTIDES AS A NOVEL TUMOR-TARGETING AGENTS FOR BLADDER CANCER. Journal of Urology, 2011, 185, .	0.4	0
45	1219 POSTER Turning Traditional Cytotoxic Drugs Into Tumour-selective Agents. European Journal of Cancer, 2011, 47, S150.	2.8	Ο
46	Targetâ€Selective Drug Delivery through Liposomes Labeled with Oligobranched Neurotensin Peptides. ChemMedChem, 2011, 6, 678-685.	3.2	41
47	Abstract 2319: Target selective drug delivery through liposomes labeled with tetra-branched neurotensin peptides. , 2011, , .		Ο
48	Design and In vitro Evaluation of Branched Peptide Conjugates: Turning Nonspecific Cytotoxic Drugs into Tumor‣elective Agents. ChemMedChem, 2010, 5, 567-574.	3.2	47
49	Effect of ligand binding on human <scp>D</scp> â€amino acid oxidase: Implications for the development of new drugs for schizophrenia treatment. Protein Science, 2010, 19, 1500-1512.	7.6	48
50	A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock <i>in vivo</i> . FASEB Journal, 2010, 24, 1015-1022.	0.5	66
51	Modular Branched Neurotensin Peptides for Tumor Target Tracing and Receptor-Mediated Therapy: A Proof-of-Concept. Current Cancer Drug Targets, 2010, 10, 695-704.	1.6	37
52	Oligo-branched peptides for tumor targeting: from magic bullets to magic forks. Expert Opinion on Biological Therapy, 2009, 9, 171-178.	3.1	22
53	A HCMV pp65 polypeptide promotes the expansion of CD4 ⁺ and CD8 ⁺ T cells across a wide range of HLA specificities. Journal of Cellular and Molecular Medicine, 2009, 13, 2131-2147.	3.6	10
54	Tumor Imaging With Tetrabranched Neurotensin. Advances in Experimental Medicine and Biology, 2009, 611, 437-438.	1.6	1

#	Article	IF	CITATIONS
55	Solubility Improvement of an Anthrax Toxin Peptide Inhibitor by Rational Aminoacid Randomization. Protein and Peptide Letters, 2008, 15, 562-566.	0.9	4
56	Branched Peptides as Therapeutics. Current Protein and Peptide Science, 2008, 9, 468-477.	1.4	68
57	Synthesis and biological activity of stable branched neurotensin peptides for tumor targeting. Molecular Cancer Therapeutics, 2007, 6, 2441-2448.	4.1	63
58	Characterization of the branched antimicrobial peptide M6 by analyzing its mechanism of action andin vivo toxicity. Journal of Peptide Science, 2007, 13, 393-399.	1.4	37
59	Molecular Basis of Branched Peptides Resistance to Enzyme Proteolysis. Chemical Biology and Drug Design, 2007, 69, 216-221.	3.2	85
60	NMR Studies of Lysozyme Surface Accessibility by Using Different Paramagnetic Relaxation Probes. Journal of the American Chemical Society, 2006, 128, 9290-9291.	13.7	31
61	Tertiary structure prediction of SARS coronavirus helicase. Biochemical and Biophysical Research Communications, 2006, 343, 1101-1104.	2.1	26
62	Branched Neurotensin for Tumor Targeting. , 2006, , 371-372.		0
63	Stable peptide inhibitors prevent binding of lethal and oedema factors to protective antigen and neutralize anthrax toxin in vivo. Biochemical Journal, 2006, 395, 157-163.	3.7	30
64	NMR studies of BPTI aggregation by using paramagnetic relaxation reagents. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 856-862.	2.3	14
65	Systemic lupus erythematosus in Europe at the change of the millennium: Lessons from the "Euro-Lupus Project― Autoimmunity Reviews, 2006, 5, 180-186.	5.8	115
66	Selective occlusion of tumor blood vessels by targeted delivery of an antibody-photosensitizer conjugate. International Journal of Cancer, 2006, 118, 1805-1813.	5.1	65
67	Identification of an Antiangiogenic FGF2-binding Site in the N Terminus of the Soluble Pattern Recognition Receptor PTX3. Journal of Biological Chemistry, 2006, 281, 22605-22613.	3.4	101
68	Structurally Driven Selection of Human Hepatitis C Virus Mimotopes. Antiviral Therapy, 2006, 11, 917-922.	1.0	0
69	Bioactive Peptides from Libraries. Chemistry and Biology, 2005, 12, 417-426.	6.0	81
70	Three-dimensional computation of atom depth in complex molecular structures. Bioinformatics, 2005, 21, 2856-2860.	4.1	45
71	Antimicrobial Activity of Novel Dendrimeric Peptides Obtained by Phage Display Selection and Rational Modification. Antimicrobial Agents and Chemotherapy, 2005, 49, 2665-2672.	3.2	122
72	Identification of new Th peptides from the cytomegalovirus protein pp65 to design a peptide library for generation of CD4 T cell lines for cellular immunoreconstitution. International Immunology, 2004, 16, 635-642.	4.0	36

#	Article	IF	CITATIONS
73	Prediction of quaternary assembly of SARS coronavirus peplomer. Biochemical and Biophysical Research Communications, 2004, 325, 1210-1214.	2.1	20
74	Recognition of cmv pp65 protein antigen by human cd4 t-cell lines induced with an immunodominant peptide pool. Human Immunology, 2004, 65, 537-543.	2.4	10
75	NMR and MD Studies on the Interaction Between Ligand Peptides and α-Bungarotoxin. Journal of Molecular Biology, 2004, 339, 1169-1177.	4.2	6
76	Strategies for the Construction and Use of Peptide and Antibody Libraries Displayed on Phages. Current Protein and Peptide Science, 2004, 5, 487-496.	1.4	22
77	Rational Design and Molecular Diversity for the Construction of Anti-α-Bungarotoxin Antidotes with High Affinity and In Vivo Efficiency. Chemistry and Biology, 2003, 10, 411-417.	6.0	21
78	Anti-mu opioid antiserum against the third external loop of the cloned mu-opioid receptor acts as a mu receptor neutral antagonist. Molecular Brain Research, 2003, 119, 100-110.	2.3	9
79	Synthetic Peptides in the Form of Dendrimers Become Resistant to Protease Activity. Journal of Biological Chemistry, 2003, 278, 46590-46595.	3.4	146
80	Therapeutic Activity of an Engineered Synthetic Killer Antiidiotypic Antibody Fragment against Experimental Mucosal and Systemic Candidiasis. Infection and Immunity, 2003, 71, 6205-6212.	2.2	104
81	Biochemical filtering of a protein-protein docking simulation identifies the structure of a complex between a recombinant antibody fragment and alpha-bungarotoxin. Biochemical Journal, 2003, 371, 423-427.	3.7	7
82	HLA Class II DNA Typing in a Large Series of European Patients with Systemic Lupus Erythematosus. Medicine (United States), 2002, 81, 169-178.	1.0	39
83	Phage Display and Colony Filter Screening for High-Throughput Selection of Antibody Libraries. Combinatorial Chemistry and High Throughput Screening, 2002, 5, 503-510.	1.1	13
84	HISTIDYL TAGS AND STRUCTURAL STABILIZATION OF LINEAR PEPTIDES. Spectroscopy Letters, 2002, 35, 111-118.	1.0	1
85	A Branched Peptide Mimotope of the Nicotinic Receptor Binding Site Is a Potent Synthetic Antidote against the Snake Neurotoxin α-Bungarotoxinâ€. Biochemistry, 2002, 41, 10194-10199.	2.5	34
86	NMR Structure of α-Bungarotoxin Free and Bound to a Mimotope of the Nicotinic Acetylcholine Receptor. Biochemistry, 2002, 41, 1457-1463.	2.5	24
87	Peptide-protein interactions studied by surface plasmon and nuclear magnetic resonances. FEBS Letters, 2002, 511, 33-35.	2.8	22
88	Endogenous morphine modulates acute thermonociception in mice. Journal of Neurochemistry, 2002, 80, 271-277.	3.9	19
89	Metal ion complexation and folding of linear peptides. Biophysical Chemistry, 2002, 97, 79-86.	2.8	6
90	NMR studies on Ni(II) induced cyclization of a histidine-tagged peptide. Journal of Peptide Science, 2002, 8, 634-641.	1.4	2

#	Article	IF	CITATIONS
91	Mimotopes of the Nicotinic Receptor Binding Site Selected by a Combinatorial Peptide Libraryâ€. Biochemistry, 2001, 40, 6611-6619.	2.5	34
92	Epitope focus, clonal composition and Th1 phenotype of the human CD4 response to the secretory mycobacterial antigen Ag85. Clinical and Experimental Immunology, 2001, 123, 226-232.	2.6	26
93	Mimicking the nicotinic receptor binding site by a single chain Fv selected by competitive panning from a synthetic phage library. Journal of Neurochemistry, 2001, 78, 24-31.	3.9	11
94	Probing the surface of a sweet protein: NMR study of MNEI with a paramagnetic probe. Protein Science, 2001, 10, 1498-1507.	7.6	55
95	A Novel Mimetic Antigen Eliciting Protective Antibody to <i>Neisseria meningitidis</i> . Journal of Immunology, 2001, 167, 6487-6496.	0.8	51
96	NMR Studies of Protein Surface Accessibility. Journal of Biological Chemistry, 2001, 276, 42455-42461.	3.4	40
97	NMR Studies of the Interaction of $\hat{I}\pm$ -Bungarotoxin with a Mimotope of the Nicotinic Acetylcholine Receptor. , 2001, , 925-926.		0
98	Natural Analogue Peptides of an HIV-1 GP120 T-Helper Epitope Antagonize Response of GP120-Specific Human CD4 T-Cell Clones. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, 23, 1-7.	2.1	9
99	Natural Analogue Peptides of an HIV-1 GP120 T-Helper Epitope Antagonize Response of GP120-Specific Human CD4 T-Cell Clones. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, 23, 1-7.	2.1	10
100	Phage Display of Antibody Fragments. Current Protein and Peptide Science, 2000, 1, 155-169.	1.4	87
101	Antigenicity and Immunogenicity of the V3 Domain of HIV Type 1 Glycoprotein 120 Expressed on the Surface of Streptococcus gordonii. AIDS Research and Human Retroviruses, 1999, 15, 451-459.	1.1	39
102	Antagonistic activity of HIV-1 T helper peptides flanked by an unrelated carrier protein. European Journal of Immunology, 1999, 29, 1448-1455.	2.9	6
103	Functional expression in bacteria and plants of an scFv antibody fragment against tospoviruses. Immunotechnology: an International Journal of Immunological Engineering, 1999, 4, 189-201.	2.4	57
104	Antagonistic activity of HIV-1 T helper peptides flanked by an unrelated carrier protein. European Journal of Immunology, 1999, 29, 1448-1455.	2.9	0
105	11β-Hydroxysteroid dehydrogenase expression in first trimester human trophoblasts. Molecular and Cellular Endocrinology, 1998, 141, 13-20.	3.2	19
106	Molecular Mimicry Between the Rabies Virus Glycoprotein and Human Immunodeficiency Virus-1 GP120: Cross-Reacting Antibodies Induced by Rabies Vaccination. Blood, 1997, 90, 3623-3628.	1.4	24
107	Antigenicity of HIV-derived T helper determinants in the context of carrier recombinant proteins: effect on T helper cell repertoire selection. European Journal of Immunology, 1996, 26, 2461-2469.	2.9	29
108	A model of the rabies virus glycoprotein active site. Biopolymers, 1993, 33, 961-969.	2.4	16

#	Article	IF	CITATIONS
109	Characterization of immunoreactive octapeptides of human-cytomegalovirus gp58. FEBS Journal, 1993, 215, 383-387.	0.2	1
110	Binding of HIV-1 gp120 to the nicotinic receptor. FEBS Letters, 1992, 311, 115-118.	2.8	32
111	Quantum mechanical calculation of the electron screening in d-D fusion. Physics Letters, Section A: General, Atomic and Solid State Physics, 1991, 153, 456-460.	2.1	9
112	An antigenic determinant common to human chorionic somatomammotropin and human growth hormone revealed by limited proteolysis of immune complexes. Biopolymers, 1991, 31, 1029-1035.	2.4	0
113	Sequence homology between HIV gp120, rabies virus glycoprotein, and snake venom neurotoxins. Archives of Virology, 1990, 114, 265-269.	2.1	24
114	Structure of rubella E1 glycoprotein epitopes established by multiple peptide synthesis. Archives of Virology, 1990, 110, 271-276.	2.1	38
115	HPLC immunoaffinity purification of rabies virus glycoprotein using immobilized antipeptide antibedies. Journal of Immunological Methods, 1990, 127, 131-138.	1.4	0
116	A monoclonal antibody to a synthetic fragment of rabies virus glycoprotein binds ligands of the nicotinic cholinergic receptor. Journal of Molecular Recognition, 1989, 2, 51-55.	2.1	11
117	High performance liquid chromatography immunoaffinity purification of antibodies and antibody fragments. Journal of Immunological Methods, 1988, 114, 181-185.	1.4	7
118	Purification of Acidic Synthetic Peptides by High Performance Liquid Chromatography Using Ammonium Acetate Buffer. Journal of Liquid Chromatography and Related Technologies, 1988, 11, 1651-1660.	1.0	4
119	Antipeptide monoclonal antibodies inhibit the binding of rabies virus glycoprotein and alpha-bungarotoxin to the nicotinic acetylcholine receptor. Molecular Immunology, 1988, 25, 881-888.	2.2	45
120	Immunogenicity of a free synthetic peptide: Carrier-conjugation enhances antibody affinity for the native protein. Molecular Immunology, 1987, 24, 297-303.	2.2	46
121	Determination of antigen-specific immunoglobulin content in ascitic fluids and antisera. Journal of Immunological Methods, 1986, 92, 189-193.	1.4	8
122	Production and characterization of monoclonal antibodies to anti-human chorionic somatomammotropin by immunization with two free synthetic peptides. Molecular Immunology, 1985, 22, 1237-1241.	2.2	21