Young-Jin Cha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2748464/publications.pdf

Version: 2024-02-01

		201674	;	206112
58	6,028	27		48
papers	citations	h-index		g-index
			. '	
59	59	59		3463
all docs	docs citations	times ranked		citing authors
59 all docs	59 docs citations	59 times ranked		3463 citing authors

#	Article	IF	CITATIONS
1	Hybrid Concrete Crack Segmentation and Quantification Across Complex Backgrounds Without a Large Training Dataset. Conference Proceedings of the Society for Experimental Mechanics, 2022, , 123-128.	0.5	2
2	Bridge pier scour level quantification based on output-only Kalman filtering. Structural Health Monitoring, 2022, 21, 2116-2135.	7.5	6
3	Efficient attention-based deep encoder and decoder for automatic crack segmentation. Structural Health Monitoring, 2022, 21, 2190-2205.	7.5	120
4	Attention-based generative adversarial network with internal damage segmentation using thermography. Automation in Construction, 2022, 141, 104412.	9.8	89
5	Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage. Structural Health Monitoring, 2021, 20, 406-425.	7.5	138
6	Analyzing the Robustness of Hybrid, Output-Only, Kalman Filtering–Based System Identification Method. Lecture Notes in Civil Engineering, 2021, , 533-542.	0.4	0
7	Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures. Automation in Construction, 2021, 130, 103831.	9.8	68
8	A study of digital and physical workflows used for the creation of fabric-formed ice shells with bending active frames. International Journal of Space Structures, 2021, 36, 13-25.	1.0	2
9	SDDNet: Real-Time Crack Segmentation. IEEE Transactions on Industrial Electronics, 2020, 67, 8016-8025.	7.9	226
10	Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning. Automation in Construction, 2020, 118, 103291.	9.8	203
11	Hybrid output-only structural system identification using random decrement and Kalman filter. Mechanical Systems and Signal Processing, 2020, 144, 106977.	8.0	22
12	Subsurface damage detection of a steel bridge using deep learning and uncooled micro-bolometer. Construction and Building Materials, 2019, 226, 376-387.	7.2	100
13	Deep learning-based automatic volumetric damage quantification using depth camera. Automation in Construction, 2019, 99, 114-124.	9.8	146
14	Fully automated vision-based loosened bolt detection using the Viola–Jones algorithm. Structural Health Monitoring, 2019, 18, 422-434.	7.5	89
15	An iterated cubature unscented Kalman filter for large-DoF systems identification with noisy data. Journal of Sound and Vibration, 2018, 420, 21-34.	3.9	30
16	Unsupervised novelty detection–based structural damage localization using a density peaks-based fast clustering algorithm. Structural Health Monitoring, 2018, 17, 313-324.	7.5	89
17	Autonomous Structural Visual Inspection Using Regionâ€Based Deep Learning for Detecting Multiple Damage Types. Computer-Aided Civil and Infrastructure Engineering, 2018, 33, 731-747.	9.8	943
18	Autonomous UAVs for Structural Health Monitoring Using Deep Learning and an Ultrasonic Beacon System with Geo†agging. Computer-Aided Civil and Infrastructure Engineering, 2018, 33, 885-902.	9.8	243

#	Article	IF	Citations
19	Advanced Sensing and Structural Health Monitoring. Journal of Sensors, 2018, 2018, 1-3.	1.1	7
20	Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure. Sensors, 2018, 18, 1018.	3.8	12
21	Deep faster R-CNN-based automated detection and localization of multiple types of damage. , 2018, , .		24
22	Damage detection with an autonomous UAV using deep learning. , 2018, , .		6
23	Vision-based concrete crack detection technique using cascade features. , 2018, , .		1
24	Automated damage-sensitive feature extraction using unsupervised convolutional neural networks. , 2018, , .		6
25	Identification of large-scale systems with noisy data using an iterated cubature unscented Kalman filter. , 2018, , .		0
26	Automated air-coupled impact echo based non-destructive testing using machine learning. , 2018, , .		0
27	Automated volumetric damage detection and quantification using region-based convolution neural networks and an inexpensive depth camera. , 2018, , .		0
28	Automated Vision-Based Loosened Bolt Detection Using the Cascade Detector. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 23-28.	0.5	10
29	Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters. Engineering Structures, 2017, 132, 300-313.	5.3	141
30	Wavelet Transform-Based Damage Detection in Reinforced Concrete Using an Air-Coupled Impact-Echo Method. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 23-25.	0.5	2
31	Deep Learningâ€Based Crack Damage Detection Using Convolutional Neural Networks. Computer-Aided Civil and Infrastructure Engineering, 2017, 32, 361-378.	9.8	2,022
32	Air-coupled impact-echo damage detection in reinforced concrete using wavelet transforms. Smart Materials and Structures, 2017, 26, 025018.	3.5	20
33	Seismic retrofit of MRF buildings using decentralized semiâ€active control for multiâ€ŧarget performances. Earthquake Engineering and Structural Dynamics, 2017, 46, 409-424.	4.4	9
34	Vision-Based Concrete Crack Detection Using a Convolutional Neural Network. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 71-73.	0.5	13
35	Unsupervised Novelty Detection Techniques for Structural Damage Localization: A Comparative Study. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 125-132.	0.5	3
36	Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building. Sensors, 2016, 16, 1016.	3.8	10

#	Article	IF	Citations
37	Vision-based detection of loosened bolts using the Hough transform and support vector machines. Automation in Construction, 2016, 71, 181-188.	9.8	208
38	Robustness studies of sensor faults and noises for semi-active control strategies using large-scale magnetorheological dampers. JVC/Journal of Vibration and Control, 2016, 22, 1228-1243.	2.6	15
39	Time-Delay Effects on Controlled Seismically Excited Linear and Nonlinear Structures. International Journal of Structural Stability and Dynamics, 2016, 16, 1550031.	2.4	10
40	Seismic fragility estimates of a moment-resisting frame building controlled by MR dampers using performance-based design. Engineering Structures, 2016, 116, 192-202.	5.3	27
41	Modal identification of simple structures with high-speed video using motion magnification. Journal of Sound and Vibration, 2015, 345, 58-71.	3.9	381
42	Structural Damage Detection Using Modal Strain Energy and Hybrid Multiobjective Optimization. Computer-Aided Civil and Infrastructure Engineering, 2015, 30, 347-358.	9.8	161
43	Active control of highway bridges subject to a variety of earthquake loads. Earthquake Engineering and Engineering Vibration, 2015, 14, 253-263.	2.3	22
44	In-Place Performance of Severely Deteriorated Pervious Concrete: A Case Study. ACI Materials Journal, 2015, 112, .	0.2	2
45	Direct performance-based design with 200kN MR dampers using multi-objective cost effective optimization for steel MRFs. Engineering Structures, 2014, 71, 60-72.	5.3	29
46	Performance Validations of Semiactive Controllers on Large-Scale Moment-Resisting Frame Equipped with 200-kN MR Damper Using Real-Time Hybrid Simulations. Journal of Structural Engineering, 2014, 140, .	3.4	25
47	Modal Strain Energy Based Damage Detection Using Multi-Objective Optimization. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 125-133.	0.5	8
48	Structural Modal Identification Through High Speed Camera Video: Motion Magnification. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 191-197.	0.5	31
49	Optimal placement of active control devices and sensors in frame structures using multi-objective genetic algorithms. Structural Control and Health Monitoring, 2013, 20, 16-44.	4.0	59
50	Decentralized output feedback polynomial control of seismically excited structures using genetic algorithm. Structural Control and Health Monitoring, 2013, 20, 241-258.	4.0	29
51	Wavelet-neuro-fuzzy control of hybrid building-active tuned mass damper system under seismic excitations. JVC/Journal of Vibration and Control, 2013, 19, 1881-1894.	2.6	32
52	Comparative Studies of Semiactive Control Strategies for MR Dampers: Pure Simulation and Real-Time Hybrid Tests. Journal of Structural Engineering, 2013, 139, 1237-1248.	3.4	57
53	Velocity based semi-active turbo-Lyapunov control algorithms for seismically excited nonlinear smart structures. Structural Control and Health Monitoring, 2013, 20, 1043-1056.	4.0	20
54	Multi-objective optimization for actuator and sensor layouts of actively controlled 3D buildings. JVC/Journal of Vibration and Control, 2013, 19, 942-960.	2.6	30

Young-Jin Cha

#	Article	IF	CITATIONS
55	Multi-objective genetic algorithms for cost-effective distributions of actuators and sensors in large structures. Expert Systems With Applications, 2012, 39, 7822-7833.	7.6	71
56	Motion Magnification Based Damage Detection Using High Speed Video. , 0, , .		7
57	Comparative Study on Multi-Objective Genetic Algorithms for Seismic Response Controls of Structures. , 0, , 333-358.		1
58	Comparative Study on Multi-Objective Genetic Algorithms for Seismic Response Controls of Structures., 0,, 1886-1911.		0