List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2748445/publications.pdf Version: 2024-02-01

		29994	31759
314	13,359	54	101
papers	citations	h-index	g-index
321	321	321	9500
all docs	docs citations	times ranked	citing authors

SVETLANA MINTOVA

#	Article	IF	CITATIONS
1	Preparation of HKUST-1/PEI mixed-matrix membranes: Adsorption-diffusion coupling control of small gas molecules. Journal of Membrane Science, 2022, 643, 120070.	4.1	23
2	The challenge of silanol species characterization in zeolites. Inorganic Chemistry Frontiers, 2022, 9, 1125-1133.	3.0	29
3	Unraveling the Effect of Silanol Defects on the Insertion of Single-Site Mo in the MFI Zeolite Framework. Inorganic Chemistry, 2022, 61, 1418-1425.	1.9	14
4	Towards a comprehensive understanding of mesoporosity in zeolite Y at the single particle level. Inorganic Chemistry Frontiers, 2022, 9, 2365-2373.	3.0	7
5	Dissolution Behavior and Varied Mesoporosity of Zeolites by NH ₄ F Etching. Chemistry - A European Journal, 2022, 28, e202104339.	1.7	9
6	Passivated Surface of High Aluminum Containing ZSM-5 by Silicalite-1: Synthesis and Application in Dehydration Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 4839-4848.	3.2	8
7	Alkali Metal Cations Influence the CO ₂ Adsorption Capacity of Nanosized Chabazite: Modeling vs Experiment. ACS Applied Nano Materials, 2022, 5, 5578-5588.	2.4	22
8	Ordered sodium zeolite-templated carbon with high first discharge capacity for sodium battery application. Microporous and Mesoporous Materials, 2022, 336, 111853.	2.2	7
9	Stable EMT type zeolite/CsPbBr3 perovskite quantum dot nanocomposites for highly sensitive humidity sensors. Journal of Colloid and Interface Science, 2022, 616, 921-928.	5.0	13
10	Engineering RHO Nanozeolite: Controlling the Particle Morphology, Al and Cation Content, Stability, and Flexibility. ACS Applied Energy Materials, 2022, 5, 6032-6042.	2.5	11
11	Hydroxyl environments in zeolites probed by deuterium solid-state MAS NMR combined with IR spectroscopy. Inorganic Chemistry Frontiers, 2022, 9, 2964-2968.	3.0	2
12	Modulation of surface chemistry by boron modification to achieve a superior VOX/Al2O3 catalyst in propane dehydrogenation. Catalysis Today, 2022, 402, 248-258.	2.2	4
13	Access to sodalite cages in ion-exchanged nanosized FAU zeolites probed by hyperpolarized 129Xe NMR and DFT calculations. Microporous and Mesoporous Materials, 2022, 338, 111965.	2.2	5
14	Efficient hydrodesulfurization of dibenzothiophene over core–shell Ni/Al ₂ O ₃ @SOD and Mo/Al ₂ O ₃ composite catalysts. Inorganic Chemistry Frontiers, 2022, 9, 3384-3391.	3.0	1
15	Elucidation of the reaction mechanism of indirect oxidative carbonylation of methanol to dimethyl carbonate on Pd/NaY catalyst: Direct identification of reaction intermediates. Journal of Catalysis, 2022, 412, 30-41.	3.1	16
16	Scalable solvent-free synthesis of aggregated nanosized single-phase cancrinite zeolite. Materials Today Communications, 2022, 32, 103879.	0.9	1
17	Advanced scanning electron microscopy techniques for structural characterization of zeolites. Inorganic Chemistry Frontiers, 2022, 9, 4225-4231.	3.0	6
18	Highly active Pd containing EMT zeolite catalyst for indirect oxidative carbonylation of methanol to dimethyl carbonate. Journal of Energy Chemistry, 2021, 52, 191-201.	7.1	21

#	Article	IF	CITATIONS
19	Transformation of Discrete Amorphous Aluminosilicate Nanoparticles into Nanosized Zeolites. Advanced Materials Interfaces, 2021, 8, 2000634.	1.9	6
20	Ruthenium tris(2,2′-bipyridyl) complex encapsulated in nanosized faujasite zeolite as intracellular localization tracer. Journal of Colloid and Interface Science, 2021, 581, 919-927.	5.0	9
21	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	18.7	47
22	Room-Temperature Synthesis of BPH Zeolite Nanosheets Free of Organic Template with Enhanced Stability for Gas Separations. ACS Applied Nano Materials, 2021, 4, 24-28.	2.4	9
23	Reversing Titanium Oligomer Formation towards Highâ€Efficiency and Green Synthesis of Titaniumâ€Containing Molecular Sieves. Angewandte Chemie, 2021, 133, 3485-3490.	1.6	2
24	Reversing Titanium Oligomer Formation towards Highâ€Efficiency and Green Synthesis of Titaniumâ€Containing Molecular Sieves. Angewandte Chemie - International Edition, 2021, 60, 3443-3448.	7.2	58
25	Facile and fast determination of Si/Al ratio of zeolites using FTIR spectroscopy technique. Microporous and Mesoporous Materials, 2021, 311, 110683.	2.2	47
26	Silanol defect engineering and healing in zeolites: opportunities to fine-tune their properties and performances. Chemical Society Reviews, 2021, 50, 11156-11179.	18.7	100
27	The inner heterogeneity of ZSM-5 zeolite crystals. Journal of Materials Chemistry A, 2021, 9, 4203-4212.	5.2	21
28	Crystallization pathway from a highly viscous colloidal suspension to ultra-small FAU zeolite nanocrystals. Journal of Materials Chemistry A, 2021, 9, 17492-17501.	5.2	15
29	Control the position of framework defects in zeolites by changing the symmetry of organic structure directing agents. Microporous and Mesoporous Materials, 2021, 315, 110899.	2.2	12
30	Mesostructured cellular foam silica supported Au–Pt nanoalloy: Enrichment of d-state electrons for promoting the catalytic synergy. Microporous and Mesoporous Materials, 2021, 316, 110982.	2.2	9
31	Effects of Synthesis Parameters on the Crystallization Profile and Morphological Properties of SAPO-5 Templated by 1-Benzyl-2,3-Dimethylimidazolium Hydroxide. Crystals, 2021, 11, 279.	1.0	1
32	Spray-dispersion of ultra-small EMT zeolite crystals in thin-film composite membrane for high-permeability nanofiltration process. Journal of Membrane Science, 2021, 622, 119045.	4.1	27
33	Offretite Zeolite Single Crystals Synthesized by Amphiphile-Templating Approach. Molecules, 2021, 26, 2238.	1.7	Ο
34	Mechanical pressure-mediated Pd active sites formation in NaY zeolite catalysts for indirect oxidative carbonylation of methanol to dimethyl carbonate. Journal of Catalysis, 2021, 396, 269-280.	3.1	16
35	Thin Functional Zeolite Layer Supported on Infrared Resonant Nanoâ€Antennas for the Detection of Benzene Traces. Advanced Functional Materials, 2021, 31, 2101623.	7.8	10
36	Highly stable Ni/ <scp>ZnOâ€Al₂O₃</scp> adsorbent promoted by <scp>TiO₂</scp> for reactive adsorption desulfurization. EcoMat, 2021, 3, e12114.	6.8	11

#	Article	IF	CITATIONS
37	Design of an intercalated Nano-MoS2 hydrophobic catalyst with high rim sites to improve the hydrogenation selectivity in hydrodesulfurization reaction. Applied Catalysis B: Environmental, 2021, 286, 119907.	10.8	37
38	Understanding the Fundamentals of Microporosity Upgrading in Zeolites: Increasing Diffusion and Catalytic Performances. Advanced Science, 2021, 8, e2100001.	5.6	23
39	Atomic-Insight into Zeolite Catalyst Forming—an Advanced NMR Study. Journal of Physical Chemistry C, 2021, 125, 20028-20034.	1.5	4
40	Effect of Sodium Concentration on the Synthesis of Faujasite by Two-step Synthesis Procedure. Chemical Research in Chinese Universities, 2021, 37, 1137.	1.3	1
41	The role of mixed alkali metal cations on the formation of nanosized CHA zeolite from colloidal precursor suspension. Journal of Colloid and Interface Science, 2021, 604, 350-357.	5.0	13
42	Preparation of core–shell-like zeolites by diffusion controlled chemical etching. Inorganic Chemistry Frontiers, 2021, 8, 2144-2152.	3.0	15
43	Complex H-bonded silanol network in zeolites revealed by IR and NMR spectroscopy combined with DFT calculations. Journal of Materials Chemistry A, 2021, 9, 27347-27352.	5.2	33
44	Compatibility between Activity and Selectivity in Catalytic Oxidation of Benzyl Alcohol with Au–Pd Nanoparticles through Redox Switching of SnO <i>_x</i> . ACS Applied Materials & Interfaces, 2021, 13, 49780-49792.	4.0	14
45	Unlocking the potential of hidden sites in FAUJASITE: new insights in a proton transfer mechanism. Angewandte Chemie - International Edition, 2021, 60, 26702-26709.	7.2	17
46	Strategy towards enhanced performance of zeolite catalysts: Raising effective diffusion coefficient versus reducing diffusion length. Chemical Engineering Journal, 2020, 385, 123800.	6.6	20
47	Recyclable synthesis of Cs-ABW zeolite nanocrystals from non-reacted mother liquors with excellent catalytic henry reaction performance. Journal of Environmental Chemical Engineering, 2020, 8, 103579.	3.3	7
48	Crystallization profile and morphological study of SAPO-5 templated by imidazolium cations of different functional groups. Microporous and Mesoporous Materials, 2020, 308, 110514.	2.2	6
49	Hotâ€Electron Photodynamics in Silverâ€Containing BEAâ€Type Nanozeolite Studied by Femtosecond Transient Absorption Spectroscopy. ChemPhysChem, 2020, 21, 2634-2643.	1.0	2
50	Emphasis on the Properties of Metal ontaining Zeolites Operating Outside the Comfort Zone of Current Heterogeneous Catalytic Reactions. Angewandte Chemie - International Edition, 2020, 59, 19414-19432.	7.2	21
51	Novel Strategy for the Synthesis of Ultraâ€Stable Singleâ€Site Moâ€ZSMâ€5 Zeolite Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 19553-19560.	7.2	61
52	Novel Strategy for the Synthesis of Ultra‣table Single‣ite Moâ€ZSMâ€5 Zeolite Nanocrystals. Angewandte Chemie, 2020, 132, 19721-19728.	1.6	10
53	Interzeolite conversion of a micronsized FAU to a nanosized CHA zeolite free of organic structure directing agent with a high CO2 capacity. RSC Advances, 2020, 10, 42953-42959.	1.7	16
54	Perovskite-Type LaCoO ₃ as an Efficient and Green Catalyst for Sustainable Partial Oxidation of Cyclohexane. Industrial & Engineering Chemistry Research, 2020, 59, 21322-21332.	1.8	29

#	Article	IF	CITATIONS
55	Emphasis on the Properties of Metal ontaining Zeolites Operating Outside the Comfort Zone of Current Heterogeneous Catalytic Reactions. Angewandte Chemie, 2020, 132, 19582-19600.	1.6	13
56	Nanosized zeolites as a gas delivery platform in a glioblastoma model. Biomaterials, 2020, 257, 120249.	5.7	14
57	Synthesis of Discrete CHA Zeolite Nanocrystals without Organic Templates for Selective CO 2 Capture. Angewandte Chemie, 2020, 132, 23697-23701.	1.6	10
58	Synthesis of Discrete CHA Zeolite Nanocrystals without Organic Templates for Selective CO ₂ Capture. Angewandte Chemie - International Edition, 2020, 59, 23491-23495.	7.2	61
59	Diffusion and catalyst efficiency in hierarchical zeolite catalysts. National Science Review, 2020, 7, 1726-1742.	4.6	104
60	Transformation of hollow ZnFe-ZIF-8 nanocrystals into hollow ZnFe–N/C electrocatalysts for the oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 21183-21191.	1.4	4
61	Unraveling the Diffusion Properties of Zeolite-Based Multicomponent Catalyst by Combined Gravimetric Analysis and IR Spectroscopy (AGIR). ACS Catalysis, 2020, 10, 6822-6830.	5.5	26
62	In-Situ Ellipsometric Study of the Optical Properties of LTL-Doped Thin Film Sensors for Copper(II) Ion Detection. Coatings, 2020, 10, 423.	1.2	7
63	Highly stable phosphine modified VOx/Al2O3 catalyst in propane dehydrogenation. Applied Catalysis B: Environmental, 2020, 274, 119089.	10.8	57
64	Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance. Sensors and Actuators B: Chemical, 2020, 320, 128405.	4.0	50
65	CO2 adsorption in nanosized RHO zeolites with different chemical compositions and crystallite sizes. Microporous and Mesoporous Materials, 2020, 306, 110394.	2.2	10
66	Water-soluble coumarin oligomer based ultra-sensitive iron ion probe and applications. Sensors and Actuators B: Chemical, 2020, 320, 128361.	4.0	18
67	Probing the BrÃ,nsted Acidity of the External Surface of Faujasite‶ype Zeolites. ChemPhysChem, 2020, 21, 1873-1881.	1.0	30
68	Intra-crystalline mesoporous ZSM-5 zeolite by grinding synthesis method. Microporous and Mesoporous Materials, 2020, 306, 110437.	2.2	16
69	Flexible Template-Free RHO Nanosized Zeolite for Selective CO ₂ Adsorption. Chemistry of Materials, 2020, 32, 5985-5993.	3.2	31
70	Zeolites in a good shape: Catalyst forming by extrusion modifies their performances. Microporous and Mesoporous Materials, 2020, 299, 110114.	2.2	44
71	Crossâ€Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation. Angewandte Chemie - International Edition, 2020, 59, 6284-6288.	7.2	31
72	Defect-engineered zeolite porosity and accessibility. Journal of Materials Chemistry A, 2020, 8, 3621-3631.	5.2	52

#	Article	IF	CITATIONS
73	Incorporation of trivalent cations in NaX zeolite nanocrystals for the adsorption of O ₂ in the presence of CO ₂ . Physical Chemistry Chemical Physics, 2020, 22, 9934-9942.	1.3	13
74	Crossâ€Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation. Angewandte Chemie, 2020, 132, 6343-6347.	1.6	3
75	Morphological effects on catalytic performance of LTL zeolites in acylation of 2-methylfuran enhanced by non-microwave instant heating. Materials Chemistry and Physics, 2020, 244, 122688.	2.0	14
76	Zeolite Nanocrystals Protect the Performance of Organic Additives and Adsorb Acid Compounds during Lubricants Oxidation. Materials, 2019, 12, 2830.	1.3	5
77	Formation of PdO on Au–Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. Journal of Catalysis, 2019, 375, 32-43.	3.1	60
78	Direct Evidence for Single Molybdenum Atoms Incorporated in the Framework of MFI Zeolite Nanocrystals. Journal of the American Chemical Society, 2019, 141, 8689-8693.	6.6	57
79	Hydrophobic Tungsten-Containing MFI-Type Zeolite Films for Exhaust Gas Detection. ACS Applied Materials & Interfaces, 2019, 11, 12914-12919.	4.0	16
80	Molecular interaction of fibrinogen with zeolite nanoparticles. Scientific Reports, 2019, 9, 1558.	1.6	21
81	Copper exchanged FAU nanozeolite as non-toxic nitric oxide and carbon dioxide gas carrier. Microporous and Mesoporous Materials, 2019, 280, 271-276.	2.2	7
82	Microwave-green synthesis of AlPO-n and SAPO-n (n = 5 and 18) nanosized crystals and their assembly in layers. Microporous and Mesoporous Materials, 2019, 280, 256-263.	2.2	19
83	Selective Conversion of Glucose to 5-Hydroxymethylfurfural by Using L-Type Zeolites with Different Morphologies. Catalysts, 2019, 9, 1073.	1.6	15
84	Micro- and macroscopic observations of the nucleation process and crystal growth of nanosized Cs-pollucite in an organotemplate-free hydrosol. New Journal of Chemistry, 2019, 43, 17433-17440.	1.4	9
85	Photoactive Metal-Containing Zeolitic Materials for Sensing and Light-to-Chemical Energy Conversion. , 2019, , 331-349.		0
86	Green Hydrogen Separation from Nitrogen by Mixedâ€Matrix Membranes Consisting of Nanosized Sodalite Crystals. ChemSusChem, 2019, 12, 4529-4537.	3.6	23
87	Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. Catalysis Reviews - Science and Engineering, 2019, 61, 333-405.	5.7	84
88	Nanosized Cs-pollucite zeolite synthesized under mild condition and its catalytic behavior. Materials Research Express, 2019, 6, 025026.	0.8	5
89	Spontaneous galvanic deposition of nanoporous Pd on microfibrous-structured Al-fibers for CO oxidative coupling to dimethyl oxalate. Catalysis Communications, 2019, 119, 39-41.	1.6	9
90	CO ₂ Adsorption/Desorption in FAU Zeolite Nanocrystals: In Situ Synchrotron X-ray Powder Diffraction and in Situ Fourier Transform Infrared Spectroscopic Study. Journal of Physical Chemistry C, 2019, 123, 2361-2369.	1.5	34

#	Article	IF	CITATIONS
91	Beta-MCM-41 micro-mesoporous catalysts in the hydroisomerization of n-heptane: Definition of an indexed isomerization factor as a performance descriptor. Microporous and Mesoporous Materials, 2019, 277, 17-28.	2.2	31
92	Synthesis of Cs-ABW nanozeolite in organotemplate-free system. Microporous and Mesoporous Materials, 2019, 277, 78-83.	2.2	22
93	Effects of various alkali metal cations on the synthesis, crystallization and catalytic properties of NKX-2 aluminophosphites. Materials Chemistry and Physics, 2019, 222, 81-86.	2.0	3
94	γ-Radiolysis preparation of nanometer-sized cadmium sulphide quantum dots stabilized in nanozeolite X and ZSM-5. New Journal of Chemistry, 2018, 42, 5465-5470.	1.4	2
95	Detection of CO2 and O2 by iron loaded LTL zeolite films. Frontiers of Chemical Science and Engineering, 2018, 12, 94-102.	2.3	7
96	Formation of copper nanoparticles in LTL nanosized zeolite: spectroscopic characterization. Physical Chemistry Chemical Physics, 2018, 20, 2880-2889.	1.3	11
97	Red mud as aluminium source for the synthesis of magnetic zeolite. Microporous and Mesoporous Materials, 2018, 270, 24-29.	2.2	63
98	Label-free electrochemical immunosensor based on conductive Ag contained EMT-style nano-zeolites and the application for α-fetoprotein detection. Sensors and Actuators B: Chemical, 2018, 255, 2919-2926.	4.0	28
99	Encapsulation of fluorescein into nanozeolites L and Y. Microporous and Mesoporous Materials, 2018, 260, 70-75.	2.2	3
100	LTL type nanozeolites utilized in surface photonics structures for environmental sensors. Microporous and Mesoporous Materials, 2018, 261, 268-274.	2.2	11
101	Synergy between a sulfur-tolerant Pt/Al2O3@sodalite core–shell catalyst and a CoMo/Al2O3 catalyst. Journal of Catalysis, 2018, 368, 89-97.	3.1	20
102	Nanoparticle Alloy Formation by Radiolysis. Journal of Physical Chemistry C, 2018, 122, 12573-12588.	1.5	37
103	A Facile Route toward the Increase of Oxygen Content in Nanosized Zeolite by Insertion of Cerium and Fluorinated Compounds. Molecules, 2018, 23, 37.	1.7	12
104	Self-processing photopolymer materials for versatile design and fabrication of holographic sensors and interactive holograms. Applied Optics, 2018, 57, E173.	0.9	26
105	Combined alkali dissolution and re-assembly approach toward ZSM-5 mesostructures with extended lifetime in cumene cracking. Journal of Colloid and Interface Science, 2018, 529, 283-293.	5.0	10
106	Thermal resonant zeolite-based gas sensor. Sensors and Actuators B: Chemical, 2017, 245, 179-182.	4.0	20
107	Hydrogen positions in single nanocrystals revealed by electron diffraction. Science, 2017, 355, 166-169.	6.0	203
108	Sodalite cages of EMT zeolite confined neutral molecular-like silver clusters. Microporous and Mesoporous Materials, 2017, 244, 74-82.	2.2	32

#	Article	IF	CITATIONS
109	Acute Toxicity of Silver Free and Encapsulated in Nanosized Zeolite for Eukaryotic Cells. ACS Applied Materials & Interfaces, 2017, 9, 13849-13854.	4.0	14
110	Optical fiber–Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing. Sensors and Actuators B: Chemical, 2017, 248, 359-366.	4.0	8
111	Selective response of pyrylium-functionalized nanozeolites in the visible spectrum towards volatile organic compounds. Sensors and Actuators B: Chemical, 2017, 249, 114-122.	4.0	5
112	K-F zeolite nanocrystals synthesized from organic-template-free precursor mixture. Microporous and Mesoporous Materials, 2017, 249, 105-110.	2.2	32
113	Application of Cu-FAU nanozeolites for decontamination of surfaces soiled with the ESKAPE pathogens. Microporous and Mesoporous Materials, 2017, 253, 233-238.	2.2	8
114	AlPO-5 nanocrystals templated by 1-ethyl-2,3-dimethylimidazolium hydroxide and their textural and water sorption properties. Materials Chemistry and Physics, 2017, 188, 49-57.	2.0	9
115	Synthesis of new cobalt aluminophosphate framework by opening a cobalt methylphosphonate layered material. CrystEngComm, 2017, 19, 5100-5105.	1.3	6
116	One-pot synthesis of silanol-free nanosized MFIÂzeolite. Nature Materials, 2017, 16, 1010-1015.	13.3	135
117	Synthesis of fluorescein by a ship-in-a-bottle method in different zeolites. New Journal of Chemistry, 2017, 41, 9969-9976.	1.4	6
118	Opening the Cages of Faujasite-Type Zeolite. Journal of the American Chemical Society, 2017, 139, 17273-17276.	6.6	125
119	Hot-Electron Photodynamics of Silver-Containing Nanosized Zeolite Films Revealed by Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 26958-26966.	1.5	7
120	Compositional Changes for Reduction of Polymerisation-Induced Shrinkage in Holographic Photopolymers. Advances in Materials Science and Engineering, 2016, 2016, 1-11.	1.0	2
121	Hierarchical zeolites. MRS Bulletin, 2016, 41, 689-693.	1.7	42
122	Nanosized Na-EMT and Li-EMT zeolites: selective sorption of water and methanol studied by a combined IR and TG approach. Physical Chemistry Chemical Physics, 2016, 18, 30585-30594.	1.3	2
123	The Mosaic Structure of Zeolite Crystals. Angewandte Chemie - International Edition, 2016, 55, 15049-15052.	7.2	88
124	Formation of Copper Nanoparticles in LTL Nanosized Zeolite: Kinetics Study. Journal of Physical Chemistry C, 2016, 120, 26300-26308.	1.5	9
125	Zeolite Nanoparticles Inhibit Aβ–Fibrinogen Interaction and Formation of a Consequent Abnormal Structural Clot. ACS Applied Materials & Interfaces, 2016, 8, 30768-30779.	4.0	47
126	The Mosaic Structure of Zeolite Crystals. Angewandte Chemie, 2016, 128, 15273-15276.	1.6	30

#	Article	IF	CITATIONS
127	Microfabricated test structures for thermal gas sensor. , 2016, , .		3
128	Iron loaded EMT nanosized zeolite with high affinity towards CO 2 and NO. Microporous and Mesoporous Materials, 2016, 232, 256-263.	2.2	12
129	Mechanism of zeolites crystal growth: new findings and open questions. CrystEngComm, 2016, 18, 650-664.	1.3	168
130	Nanosized zeolites: Quo Vadis?. Comptes Rendus Chimie, 2016, 19, 183-191.	0.2	86
131	Ionothermal synthesis of FeAPO-5 in the presence of phosphorous acid. CrystEngComm, 2016, 18, 257-265.	1.3	13
132	Synthesis and encapsulation of fluorescein in zeolite Y. Microporous and Mesoporous Materials, 2016, 236, 79-84.	2.2	10
133	Properties of methylene blue in the presence of zeolite nanoparticles. New Journal of Chemistry, 2016, 40, 4277-4284.	1.4	12
134	Nanosized Sn-MFI zeolite for selective detection of exhaust gases. Materials and Design, 2016, 99, 574-580.	3.3	13
135	Zeolite nanoparticles as effective antioxidant additive for the preservation of palm oil-based lubricant. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58, 565-571.	2.7	27
136	Photonic Materials for Holographic Sensing. Springer Series in Materials Science, 2016, , 315-359.	0.4	9
137	Chemical sensing via single input â \in " Multi output approach. , 2015, , .		1
138	Zeolite Nanoparticles for Selective Sorption of Plasma Proteins. Scientific Reports, 2015, 5, 17259.	1.6	50
139	3D Study of the Morphology and Dynamics of Zeolite Nucleation. Chemistry - A European Journal, 2015, 21, 18316-18327.	1.7	22
140	Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 2015, 44, 4290-4321.	18.7	406
141	Template-free nanosized faujasite-type zeolites. Nature Materials, 2015, 14, 447-451.	13.3	360
142	High-yield nanosized (Si)AlPO-41 using ethanol polarity equalization and co-templating synthesis approach. Nanoscale, 2015, 7, 5787-5793.	2.8	20
143	Inhibition of Palm Oil Oxidation by Zeolite Nanocrystals. Journal of Agricultural and Food Chemistry, 2015, 63, 4655-4663.	2.4	10
144	Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 2015, 44, 7207-7233.	18.7	291

#	Article	IF	CITATIONS
145	Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals. Materials Chemistry and Physics, 2015, 159, 38-45.	2.0	40
146	Control of Na-EMT Zeolite Synthesis by Organic Additives. Crystal Growth and Design, 2015, 15, 1898-1906.	1.4	22
147	Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation. Nanoscale Research Letters, 2015, 10, 956.	3.1	8
148	Structure-Directing Agent Governs the Location of Silanol Defects in Zeolites. Chemistry of Materials, 2015, 27, 7577-7579.	3.2	49
149	Hybrid Sensors Fabricated by Inkjet Printing and Holographic Patterning. Chemistry of Materials, 2015, 27, 6097-6101.	3.2	34
150	EMT-type zeolite nanocrystals synthesized from rice husk. Microporous and Mesoporous Materials, 2015, 204, 204-209.	2.2	78
151	Nanoparticles-induced inflammatory cytokines in human plasma concentration manner: an ignored factor at the nanobio-interface. Journal of the Iranian Chemical Society, 2015, 12, 317-323.	1.2	12
152	Microwave synthesis of colloidal stable AlPO-5 nanocrystals with high water adsorption capacity and unique morphology. Materials Letters, 2014, 132, 126-129.	1.3	41
153	Metal loaded zeolite films with bi-modal porosity for selective detection of carbon monoxide. Microporous and Mesoporous Materials, 2014, 200, 326-333.	2.2	7
154	Vapor Responsive One-Dimensional Photonic Crystals from Zeolite Nanoparticles and Metal Oxide Films for Optical Sensing. Sensors, 2014, 14, 12207-12218.	2.1	38
155	Progress in zeolite synthesis promotes advanced applications. Microporous and Mesoporous Materials, 2014, 189, 11-21.	2.2	142
156	Photochemical Preparation of Silver Nanoparticles Supported on Zeolite Crystals. Langmuir, 2014, 30, 6250-6256.	1.6	78
157	Effect of zeolite nanoparticles on the optical properties of diacetone acrylamide-based photopolymer. Optical Materials, 2014, 37, 181-187.	1.7	18
158	Zeolite films as building blocks for antireflective coatings and vapor responsive Bragg stacks. Dalton Transactions, 2014, 43, 8868-8876.	1.6	19
159	Capturing the Formation of Sub-nanometer Sized CdS Clusters in LTL Zeolite. Journal of Physical Chemistry C, 2014, 118, 6324-6334.	1.5	13
160	Silver confined within zeolite EMT nanoparticles: preparation and antibacterial properties. Nanoscale, 2014, 6, 10859-10864.	2.8	49
161	Photoreduction of Ag+ by diethylaniline in colloidal zeolite nanocrystals. Microporous and Mesoporous Materials, 2014, 194, 183-189.	2.2	11
162	Synthesis of AlPO-5 with diol-substituted imidazolium-based organic template. Microporous and Mesoporous Materials, 2014, 194, 200-207.	2.2	17

#	Article	IF	CITATIONS
163	Advances in nanosized zeolites. Nanoscale, 2013, 5, 6693.	2.8	337
164	Environmental Synthesis Concerns of Zeolites. , 2013, , 289-310.		5
165	Ionothermal approach for synthesizing AIPO-5 with hexagonal thin-plate morphology influenced by various parameters at ambientÂpressure. Solid State Sciences, 2013, 25, 63-69.	1.5	32
166	Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicology Research, 2013, 2, 270.	0.9	41
167	MFI-type materials prepared by co-condensation synthesis approach. Catalysis Today, 2013, 204, 66-72.	2.2	2
168	Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42, 263-290.	18.7	388
169	Green removal of aromatic organic pollutants from aqueous solutions with a zeolite–hemp composite. RSC Advances, 2012, 2, 3115.	1.7	10
170	Tunable Bragg stacks from sol-gel derived Ta ₂ O ₅ and MEL zeolite films. Journal of Physics: Conference Series, 2012, 398, 012026.	0.3	5
171	Nanosized MEL zeolite and GeSe2 chalcogenide layers as functional building blocks of tunable Bragg stacks. Journal of Materials Chemistry, 2012, 22, 18136.	6.7	8
172	Nucleation and Crystal Growth Features of EMT-Type Zeolite Synthesized from an Organic-Template-Free System. Chemistry of Materials, 2012, 24, 4758-4765.	3.2	68
173	Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles. Toxicology Letters, 2012, 215, 151-160.	0.4	41
174	Capturing Ultrasmall EMT Zeolite from Template-Free Systems. Science, 2012, 335, 70-73.	6.0	260
175	Detection of Harmful Gases by Copper-Containing Metal–Organic Framework Films. Journal of Physical Chemistry C, 2012, 116, 16593-16600.	1.5	14
176	Ethanol Recovery from Water Using Silicalite″ Membrane: An Operando Infrared Spectroscopic Study. ChemPlusChem, 2012, 77, 437-444.	1.3	22
177	Cold plasma as environmentally benign approach for activation of zeolite nanocrystals. Microporous and Mesoporous Materials, 2012, 158, 148-154.	2.2	31
178	Nanosized molecular sieves utilized as an environmentally friendly alternative to antioxidants for lubricant oils. Green Chemistry, 2011, 13, 2435.	4.6	39
179	Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves. Journal of Optics (United Kingdom), 2011, 13, 044019.	1.0	24
180	Nanozeolites doped photopolymer layers with reduced shrinkage. Optics Express, 2011, 19, 25786.	1.7	23

#	Article	IF	CITATIONS
181	In Situ Infrared Molecular Detection Using Palladium-Containing Zeolite Films. Langmuir, 2011, 27, 14689-14695.	1.6	18
182	Platinum clusters confined in FAU–LTA hierarchical porous composite with a core–shell structure. Catalysis Today, 2011, 168, 140-146.	2.2	11
183	Co ₃ (HCOO) ₆ Microporous Metal–Organic Framework Membrane for Separation of CO ₂ /CH ₄ Mixtures. Chemistry - A European Journal, 2011, 17, 12076-12083.	1.7	57
184	Self-assembled titanosilicate TS-1 nanocrystals in hierarchical structures. Catalysis Today, 2011, 168, 112-117.	2.2	23
185	Quantitative moisture measurements in lubricating oils by FTIR spectroscopy combined with solvent extraction approach. Microchemical Journal, 2011, 98, 177-185.	2.3	44
186	A powerful structure-directing agent for the synthesis of nanosized Al- and high-silica zeolite Beta in alkaline medium. Microporous and Mesoporous Materials, 2011, 142, 17-25.	2.2	42
187	HOLOGRAPHIC RECORDING IN CORONA CHARGED ACRYLAMIDE-BASED MFI-ZEOLITE PHOTOPOLYMER. Journal of Nonlinear Optical Physics and Materials, 2011, 20, 271-279.	1.1	1
188	Recent and emerging applications of holographic photopolymers and nanocomposites. , 2010, , .		1
189	Plasma Synthesis of Highly Dispersed Metal Clusters Confined in Nanosized Zeolite. ChemCatChem, 2010, 2, 1074-1078.	1.8	7
190	Micro―to Macroscopic Observations of MnAlPOâ€5 Nanocrystal Growth in Ionicâ€Liquid Media. Chemistry - A European Journal, 2010, 16, 12890-12897.	1.7	37
191	Effect of stabilizing binder and dispersion media on spin-on zeolite thin films. Thin Solid Films, 2010, 518, 2241-2246.	0.8	8
192	Holographic recording in charged photopolymerisable nanocomposites. , 2010, , .		1
193	Subnanometer CdS Clusters Self-Confined in MFI-Type Zeolite Nanoparticles and Thin Films. Langmuir, 2010, 26, 4459-4464.	1.6	14
194	Elucidation of Pt Clusters in the Micropores of Zeolite Nanoparticles Assembled in Thin Films. Journal of Physical Chemistry C, 2010, 114, 20974-20982.	1.5	31
195	Photopolymerizable nanocomposites for holographic recording and sensor application. Applied Optics, 2010, 49, 3652.	2.1	75
196	Mineral oil regeneration using selective molecular sieves as sorbents. Chemosphere, 2010, 78, 591-598.	4.2	14
197	Optical Properties of Photopolymer Layers Doped with Aluminophosphate Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 16767-16775.	1.5	38
198	Preparation of Colloidal BEA Zeolite Functionalized with Pd Aggregates as a Precursor for Low Dimensionality Sensing Layer. Sensor Letters, 2010, 8, 497-501.	0.4	6

#	Article	IF	CITATIONS
199	Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer. Journal of Optics, 2009, 11, 024016.	1.5	19
200	Optical properties of silica MFI doped acrylamide-based photopolymer. Journal of Optics, 2009, 11, 024015.	1.5	16
201	Selective Capture of Water Using Microporous Adsorbents To Increase the Lifetime of Lubricants. ChemSusChem, 2009, 2, 255-260.	3.6	34
202	Nanosecond probing of the early nucleation steps of silver atoms in colloidal zeolite by pulse radiolysis and flash photolysis techniques. Research on Chemical Intermediates, 2009, 35, 379-388.	1.3	11
203	Kinetics of water adsorption in microporous aluminophosphate layers for regenerative heat exchangers. Applied Thermal Engineering, 2009, 29, 1514-1522.	3.0	65
204	Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template. Chemistry of Materials, 2009, 21, 4184-4191.	3.2	167
205	Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals. Industrial & Engineering Chemistry Research, 2009, 48, 7084-7091.	1.8	225
206	Discrete MnAlPO-5 nanocrystals synthesized by an ionothermal approach. Chemical Communications, 2009, , 1661.	2.2	41
207	Optical properties of photopolymerisable nanocomposites containing zeolite nanoparticles. , 2009, , .		0
208	Copper-containing nanoporous films. Superlattices and Microstructures, 2008, 44, 617-625.	1.4	3
209	Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials, 2008, 114, 1-26.	2.2	388
210	Nanosized EDI-type molecular sieve. Microporous and Mesoporous Materials, 2008, 116, 258-266.	2.2	8
211	Environmentally benign synthesis of nanosized aluminophosphate enhanced by microwave heating. Green Chemistry, 2008, 10, 1043.	4.6	41
212	Nanosized SAPO-34 Synthesized from Colloidal Solutions. Chemistry of Materials, 2008, 20, 2956-2963.	3.2	127
213	Inhibition of lubricant degradation by nanoporous materials. Studies in Surface Science and Catalysis, 2008, 174, 569-572.	1.5	1
214	AlPO ₄ -18 Seed Layers and Films by Secondary Growth. Chemistry of Materials, 2008, 20, 5721-5726.	3.2	37
215	High-Silica Zeolite-β: From Stable Colloidal Suspensions to Thin Films. Journal of Physical Chemistry C, 2008, 112, 14274-14280.	1.5	24
216	Exceptionally Small Colloidal Zeolites Templated by Pd and Pt Amines. Langmuir, 2008, 24, 4310-4315.	1.6	14

#	Article	IF	CITATIONS
217	Micro/Mesoporous Composites. Studies in Surface Science and Catalysis, 2007, 168, 301-VI.	1.5	22
218	Nanosized Zeolites Templated by Metalâ^'Amine Complexes. Chemistry of Materials, 2007, 19, 1203-1205.	3.2	24
219	Beads Comprising a Hierarchical Porous Core and a Microporous Shell. Journal of Physical Chemistry C, 2007, 111, 4535-4542.	1.5	25
220	Confined Detection of High-Energy-Density Materials. Journal of Physical Chemistry C, 2007, 111, 6694-6699.	1.5	41
221	Diverse copper clusters confined in microporous nanocrystals. Sensors and Actuators B: Chemical, 2007, 126, 338-343.	4.0	13
222	Perspectives of Micro/Mesoporous Composites in Catalysis. Catalysis Reviews - Science and Engineering, 2007, 49, 457-509.	5.7	350
223	AlPO-18 nanocrystals synthesized under microwave irradiation. Journal of Materials Chemistry, 2006, 16, 514-518.	6.7	46
224	Colloidal Zeolites as Host Matrix for Copper Nanoclusters. Chemistry of Materials, 2006, 18, 3373-3380.	3.2	33
225	<title>Holographic recording in nanoparticle-doped photopolymer</title> ., 2006, , .		25
226	Variation of the Si/Al ratio in nanosized zeolite Beta crystals. Microporous and Mesoporous Materials, 2006, 90, 237-245.	2.2	197
227	Porosity of micro/mesoporous composites. Microporous and Mesoporous Materials, 2006, 92, 154-160.	2.2	49
228	Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution. Microporous and Mesoporous Materials, 2006, 96, 405-412.	2.2	89
229	High-Density Energetic Material Hosted in Pure Silica MFI-Type Zeolite Nanocrystals. Advanced Materials, 2006, 18, 2440-2443.	11.1	19
230	Effect of crystal morphology on the orientation of LTL-type zeolite films. Studies in Surface Science and Catalysis, 2005, 158, 367-374.	1.5	4
231	A compact electronic speckle pattern interferometry system using a photopolymer reflection holographic optical element. , 2005, , .		0
232	Zeolite Beta nanosized assemblies. Microporous and Mesoporous Materials, 2005, 80, 227-235.	2.2	85
233	Zeolite beta films synthesized from basic and near-neutral precursor solutions and gels. Materials Science and Engineering C, 2005, 25, 570-576.	3.8	17
234	Femtochemistry of Guest Molecules Hosted in Colloidal Zeolites. Advanced Functional Materials, 2005, 15, 1973-1978.	7.8	13

#	Article	IF	CITATIONS
235	Catalytic activity of micro/mesoporous composites in toluene alkylation with propylene. Applied Catalysis A: General, 2005, 281, 85-91.	2.2	68
236	Colloidal LTL zeolite synthesized under microwave irradiation. Studies in Surface Science and Catalysis, 2005, , 11-18.	1.5	17
237	Advanced applications of zeolites. Studies in Surface Science and Catalysis, 2005, , 263-288.	1.5	25
238	Nondestructive Identification of Colloidal Molecular Sieves Stabilized in Water. Journal of Physical Chemistry B, 2005, 109, 17060-17065.	1.2	20
239	Ordered Micro/Mesoporous Composite Prepared as Thin Films. Journal of Physical Chemistry B, 2005, 109, 4485-4491.	1.2	54
240	Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study. Physical Chemistry Chemical Physics, 2005, 7, 2756.	1.3	52
241	Micro/Mesoporous Composites Based on Colloidal Zeolite Grown in Mesoporous Matrix. Collection of Czechoslovak Chemical Communications, 2005, 70, 1829-1847.	1.0	7
242	Colloidal molecular sieves: Model system for kinetic study of crystal growth process. Studies in Surface Science and Catalysis, 2004, 154, 163-170.	1.5	3
243	Silicalite-1/polymer films with low-k dielectric constants. Applied Surface Science, 2004, 226, 155-160.	3.1	30
244	AlPO4-18 synthesized from colloidal precursors and its use for the preparation of thin films. Applied Surface Science, 2004, 226, 1-6.	3.1	19
245	Photochemistry of 2-(2â€~-Hydroxyphenyl)benzothiazole Encapsulated in Nanosized Zeolites. Journal of Physical Chemistry A, 2004, 108, 10640-10648.	1.1	43
246	Nanosized Gismondine Grown in Colloidal Precursor Solutions. Langmuir, 2004, 20, 5271-5276.	1.6	38
247	Closely Packed Zeolite Nanocrystals Obtained via Transformation of Porous Amorphous Silica. Chemistry of Materials, 2004, 16, 5452-5459.	3.2	50
248	Novel colloidal aluminophosphate synthesized under microwave irradiation. Journal of Materials Chemistry, 2004, 14, 2972-2974.	6.7	5
249	Structural properties of LTA films assembled from aluminosilicate clear solutions and dense gels: A gid X-ray study. Studies in Surface Science and Catalysis, 2004, , 717-724.	1.5	3
250	Title is missing!. Journal of Materials Science Letters, 2003, 22, 751-753.	0.5	3
251	Functionalized cubic mesostructured silica films. Materials Science and Engineering C, 2003, 23, 827-831.	3.8	20
252	Preparation of nanosized micro/mesoporous composites. Materials Science and Engineering C, 2003, 23, 1001-1005.	3.8	48

#	Article	IF	CITATIONS
253	Grazing incidence synchrotron X-ray diffraction study of crystal orientation in microporous films. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 160-164.	0.6	2
254	In Situ Incorporation of 2-(2-Hydroxyphenyl)benzothiazole within FAU Colloidal Crystals. Angewandte Chemie, 2003, 115, 1649-1652.	1.6	4
255	In Situ Incorporation of 2-(2-Hydroxyphenyl)benzothiazole within FAU Colloidal Crystals. Angewandte Chemie - International Edition, 2003, 42, 1611-1614.	7.2	38
256	Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases. Microporous and Mesoporous Materials, 2003, 64, 165-174.	2.2	143
257	Formation of colloidal molecular sieves: influence of silica precursor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217, 153-157.	2.3	24
258	Fe-containing mesoporous film hosts for carbon nanotubes. Materials Science and Engineering C, 2003, 23, 145-149.	3.8	11
259	Pure silica BETA colloidal zeolite assembled in thin films. Chemical Communications, 2003, , 326-327.	2.2	50
260	Synthesis of colloidal AlPO4-18 crystals and their use for supported film growth. Journal of Materials Chemistry, 2003, 13, 1526.	6.7	25
261	Stable Mesostructured Silicate Films Containing Nanosized Zeolite. Chemistry of Materials, 2003, 15, 2240-2246.	3.2	22
262	Nanosized Molecular Sieves. Collection of Czechoslovak Chemical Communications, 2003, 68, 2032-2054.	1.0	21
263	Crystal growth of nanosized LTA zeolite from precursor colloids. Studies in Surface Science and Catalysis, 2002, , 223-229.	1.5	9
264	Spin-coating induced self-assembly of pure silica and Fe-containing mesoporous films. Studies in Surface Science and Catalysis, 2002, 142, 1465-1472.	1.5	0
265	Mechanism of the Transformation of Silica Precursor Solutions into Si-MFI Zeolite. Angewandte Chemie - International Edition, 2002, 41, 2558-2561.	7.2	120
266	Crystallization of nanosized MEL-type zeolite from colloidal precursors. Materials Science and Engineering C, 2002, 19, 111-114.	3.8	21
267	Effect of the silica source on the formation of nanosized silicalite-1: an in situ dynamic light scattering study. Microporous and Mesoporous Materials, 2002, 55, 171-179.	2.2	113
268	Humidity Sensing with Ultrathin LTA-Type Molecular Sieve Films Grown on Piezoelectric Devices. Chemistry of Materials, 2001, 13, 901-905.	3.2	137
269	Layer-by-layer preparation of zeolite coatings of nanosized crystals. Microporous and Mesoporous Materials, 2001, 43, 41-49.	2.2	130
270	Nanoscale crystal orientation in silicalite-1 films studied by grazing incidence X-ray diffraction. Microporous and Mesoporous Materials, 2001, 43, 191-200.	2.2	21

#	Article	IF	CITATIONS
271	Transformation of amorphous silica colloids to nanosized MEL zeolite. Microporous and Mesoporous Materials, 2001, 50, 121-128.	2.2	44
272	Nanosized zeolite films for vapor-sensing applications. Microporous and Mesoporous Materials, 2001, 50, 159-166.	2.2	157
273	Microporous Films Prepared by Spin-Coating Stable Colloidal Suspensions of Zeolites. Advanced Materials, 2001, 13, 1880.	11.1	160
274	Title is missing!. Journal of Porous Materials, 2001, 8, 13-22.	1.3	64
275	Controlling the preferred orientation in silicalite-1 films synthesized by seeding. Microporous and Mesoporous Materials, 1999, 28, 185-194.	2.2	140
276	Investigation of the ion-exchanged forms of the microporous titanosilicate K2TiSi3O9·H2O. Microporous and Mesoporous Materials, 1999, 32, 287-296.	2.2	25
277	Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids. Angewandte Chemie - International Edition, 1999, 38, 3201-3204.	7.2	213
278	Colloidal Nanocrystals of Zeolite β Stabilized in Alumina Matrix. Chemistry of Materials, 1999, 11, 2030-2037.	3.2	53
279	Mechanism of Zeolite A Nanocrystal Growth from Colloids at Room Temperature. Science, 1999, 283, 958-960.	6.0	593
280	Synthesis of nanosized FAU-type zeolite. Studies in Surface Science and Catalysis, 1999, 125, 141-148.	1.5	47
281	Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids. , 1999, 38, 3201.		2
282	ZSM-5 films prepared from template free precursors. Journal of Materials Chemistry, 1998, 8, 2217-2221.	6.7	71
283	Nanosized AlPO4-5 Molecular Sieves and Ultrathin Films Prepared by Microwave Synthesis. Chemistry of Materials, 1998, 10, 4030-4036.	3.2	131
284	Preparation of ZSM-5 films from template free precursors. Journal of Materials Chemistry, 1997, 7, 2341-2342.	6.7	15
285	Continuous films of zeolite ZSM-5 on modified gold surfaces. Chemical Communications, 1997, , 15-16.	2.2	54
286	Characterization of water in microporous titanium silicates. Journal of Materials Science Letters, 1997, 16, 1303-1304.	0.5	21
287	Deposition of continuous silicalite-1 films on inorganic fibers. Microporous Materials, 1997, 8, 93-101.	1.6	49
288	Growth of silicalite-1 films on gold substrates. Microporous Materials, 1997, 11, 149-160.	1.6	56

#	Article	IF	CITATIONS
289	Thin molecular sieve films on noble metal substrates. Zeolites, 1997, 18, 387-390.	0.9	55
290	Kinetic investigation of the effect of Na, K, Li and Ca on the crystallization of titanium silicate ETS-4. Zeolites, 1997, 18, 269-273.	0.9	14
291	Growth of silicalite films on pre-assembled layers of nanoscale seed crystals on piezoelectric chemical sensors. Advanced Materials, 1997, 9, 585-589.	11.1	74
292	Comparison of physicochemical properties of zorite and ETS-4. Materials Research Bulletin, 1996, 31, 163-169.	2.7	23
293	Deposition of zeolite A on vegetal fibers. Zeolites, 1996, 16, 31-34.	0.9	54
294	Vibrational spectra of ETS-4 and ETS-10. Zeolites, 1996, 16, 22-24.	0.9	70
295	In situ deposition of silicalite-1 on ZrO2 fibres. Journal of Materials Science Letters, 1996, 15, 840-841.	0.5	6
296	Preparation of zeolite Y-vegetal fiber composite materials. Journal of Porous Materials, 1996, 3, 143-150.	1.3	5
297	Preparation and characterization of hollow fibers of silicalite-1. Zeolites, 1996, 17, 408-415.	0.9	99
298	Adhesivity of molecular sieve films on metal substrates. Zeolites, 1996, 17, 462-465.	0.9	41
299	Thermal analysis of the crystallization of SAPO-5. Thermochimica Acta, 1995, 264, 59-66.	1.2	2
300	The effect of the metal substrate composition on the crystallization of zeolite coatings. Zeolites, 1995, 15, 171-175.	0.9	70
301	Tribochemical activation of seeds for rapid crystallization of zeolite Y. Zeolites, 1995, 15, 193-197.	0.9	39
302	Influence of metal substrate properties on the kinetics of zeolite film formation. Zeolites, 1995, 15, 679-683.	0.9	39
303	Zeolite crystallization on mullite fibers. Studies in Surface Science and Catalysis, 1995, , 527-532.	1.5	6
304	Synthesis of titanium silicate ETS-10: The effect of tetrametylammonium on the crystallization kinetics. Zeolites, 1994, 14, 697-700.	0.9	53
305	The degree of crystallinity of ZSM-5 determined by Raman spectroscopy. Journal of the Chemical Society Chemical Communications, 1994, , 1791.	2.0	11
306	Influence of reactive radicals in cellulose fibres on the formation of zeolite coatings. Journal of the Chemical Society Chemical Communications, 1994, , 2087.	2.0	18

#	Article	IF	CITATIONS
307	The effect of plastic deformation and thermal annealing of the copper substrate on the zeolite film formation. Journal of the Chemical Society Chemical Communications, 1994, , 979.	2.0	18
308	On the crystallization mechanism of zeolite ZSM-5: Part 1. Kinetic compensation effect for the synthesis with some diamines. Zeolites, 1993, 13, 299-304.	0.9	14
309	Analysis of zeolite crystallization by using the kinetic compensation effect. Materials Research Bulletin, 1993, 28, 915-922.	2.7	3
310	On the crystallization mechanism of zeolite ZSM-5: Part 2. MNDO calculations of basic characteristics of some diamines used as templates. Zeolites, 1993, 13, 305-308.	0.9	4
311	A correlation between the fundamental properties of templates and the kinetics of ZSM-5 crystallization. Zeolites, 1993, 13, 102-106.	0.9	16
312	Crystallization kinetics of zeolite ZSM-5. Zeolites, 1992, 12, 210-215.	0.9	48
313	Kinetics of zeolite ZSM-5 crystallization; template effect of propyl-substituted amines. Materials Research Bulletin, 1992, 27, 515-522.	2.7	8
314	Unlocking the potential of hidden sites in FAUJASITE: new insights in a proton transfer mechanism. Angewandte Chemie, 0, , .	1.6	4