Svetlana Mintova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2748445/publications.pdf

Version: 2024-02-01

314 papers 13,359 citations

54 h-index 101 g-index

321 all docs

321 docs citations

times ranked

321

9500 citing authors

#	Article	IF	CITATIONS
1	Mechanism of Zeolite A Nanocrystal Growth from Colloids at Room Temperature. Science, 1999, 283, 958-960.	12.6	593
2	Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 2015, 44, 4290-4321.	38.1	406
3	Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials, 2008, 114, 1-26.	4.4	388
4	Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42, 263-290.	38.1	388
5	Template-free nanosized faujasite-type zeolites. Nature Materials, 2015, 14, 447-451.	27.5	360
6	Perspectives of Micro/Mesoporous Composites in Catalysis. Catalysis Reviews - Science and Engineering, 2007, 49, 457-509.	12.9	350
7	Advances in nanosized zeolites. Nanoscale, 2013, 5, 6693.	5.6	337
8	Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 2015, 44, 7207-7233.	38.1	291
9	Capturing Ultrasmall EMT Zeolite from Template-Free Systems. Science, 2012, 335, 70-73.	12.6	260
10	Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals. Industrial & Engineering Chemistry Research, 2009, 48, 7084-7091.	3.7	225
11	Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids. Angewandte Chemie - International Edition, 1999, 38, 3201-3204.	13.8	213
12	Hydrogen positions in single nanocrystals revealed by electron diffraction. Science, 2017, 355, 166-169.	12.6	203
13	Variation of the Si/Al ratio in nanosized zeolite Beta crystals. Microporous and Mesoporous Materials, 2006, 90, 237-245.	4.4	197
14	Mechanism of zeolites crystal growth: new findings and open questions. CrystEngComm, 2016, 18, 650-664.	2.6	168
15	Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template. Chemistry of Materials, 2009, 21, 4184-4191.	6.7	167
16	Microporous Films Prepared by Spin-Coating Stable Colloidal Suspensions of Zeolites. Advanced Materials, 2001, 13, 1880.	21.0	160
17	Nanosized zeolite films for vapor-sensing applications. Microporous and Mesoporous Materials, 2001, 50, 159-166.	4.4	157
18	Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases. Microporous and Mesoporous Materials, 2003, 64, 165-174.	4.4	143

#	Article	IF	Citations
19	Progress in zeolite synthesis promotes advanced applications. Microporous and Mesoporous Materials, 2014, 189, 11-21.	4.4	142
20	Controlling the preferred orientation in silicalite-1 films synthesized by seeding. Microporous and Mesoporous Materials, 1999, 28, 185-194.	4.4	140
21	Humidity Sensing with Ultrathin LTA-Type Molecular Sieve Films Grown on Piezoelectric Devices. Chemistry of Materials, 2001, 13, 901-905.	6.7	137
22	One-pot synthesis of silanol-free nanosized MFIÂzeolite. Nature Materials, 2017, 16, 1010-1015.	27.5	135
23	Nanosized AlPO4-5 Molecular Sieves and Ultrathin Films Prepared by Microwave Synthesis. Chemistry of Materials, 1998, 10, 4030-4036.	6.7	131
24	Layer-by-layer preparation of zeolite coatings of nanosized crystals. Microporous and Mesoporous Materials, 2001, 43, 41-49.	4.4	130
25	Nanosized SAPO-34 Synthesized from Colloidal Solutions. Chemistry of Materials, 2008, 20, 2956-2963.	6.7	127
26	Opening the Cages of Faujasite-Type Zeolite. Journal of the American Chemical Society, 2017, 139, 17273-17276.	13.7	125
27	Mechanism of the Transformation of Silica Precursor Solutions into Si-MFI Zeolite. Angewandte Chemie - International Edition, 2002, 41, 2558-2561.	13.8	120
28	Effect of the silica source on the formation of nanosized silicalite-1: an in situ dynamic light scattering study. Microporous and Mesoporous Materials, 2002, 55, 171-179.	4.4	113
29	Diffusion and catalyst efficiency in hierarchical zeolite catalysts. National Science Review, 2020, 7, 1726-1742.	9.5	104
30	Silanol defect engineering and healing in zeolites: opportunities to fine-tune their properties and performances. Chemical Society Reviews, 2021, 50, 11156-11179.	38.1	100
31	Preparation and characterization of hollow fibers of silicalite-1. Zeolites, 1996, 17, 408-415.	0.5	99
32	Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution. Microporous and Mesoporous Materials, 2006, 96, 405-412.	4.4	89
33	The Mosaic Structure of Zeolite Crystals. Angewandte Chemie - International Edition, 2016, 55, 15049-15052.	13.8	88
34	Nanosized zeolites: Quo Vadis?. Comptes Rendus Chimie, 2016, 19, 183-191.	0.5	86
35	Zeolite Beta nanosized assemblies. Microporous and Mesoporous Materials, 2005, 80, 227-235.	4.4	85
36	Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. Catalysis Reviews - Science and Engineering, 2019, 61, 333-405.	12.9	84

#	Article	IF	CITATIONS
37	Photochemical Preparation of Silver Nanoparticles Supported on Zeolite Crystals. Langmuir, 2014, 30, 6250-6256.	3.5	78
38	EMT-type zeolite nanocrystals synthesized from rice husk. Microporous and Mesoporous Materials, 2015, 204, 204-209.	4.4	78
39	Photopolymerizable nanocomposites for holographic recording and sensor application. Applied Optics, 2010, 49, 3652.	2.1	75
40	Growth of silicalite films on pre-assembled layers of nanoscale seed crystals on piezoelectric chemical sensors. Advanced Materials, 1997, 9, 585-589.	21.0	74
41	ZSM-5 films prepared from template free precursors. Journal of Materials Chemistry, 1998, 8, 2217-2221.	6.7	71
42	The effect of the metal substrate composition on the crystallization of zeolite coatings. Zeolites, 1995, 15, 171-175.	0.5	70
43	Vibrational spectra of ETS-4 and ETS-10. Zeolites, 1996, 16, 22-24.	0.5	70
44	Catalytic activity of micro/mesoporous composites in toluene alkylation with propylene. Applied Catalysis A: General, 2005, 281, 85-91.	4.3	68
45	Nucleation and Crystal Growth Features of EMT-Type Zeolite Synthesized from an Organic-Template-Free System. Chemistry of Materials, 2012, 24, 4758-4765.	6.7	68
46	Kinetics of water adsorption in microporous aluminophosphate layers for regenerative heat exchangers. Applied Thermal Engineering, 2009, 29, 1514-1522.	6.0	65
47	Title is missing!. Journal of Porous Materials, 2001, 8, 13-22.	2.6	64
48	Red mud as aluminium source for the synthesis of magnetic zeolite. Microporous and Mesoporous Materials, 2018, 270, 24-29.	4.4	63
49	Novel Strategy for the Synthesis of Ultraâ€Stable Singleâ€Site Moâ€ZSMâ€5 Zeolite Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 19553-19560.	13.8	61
50	Synthesis of Discrete CHA Zeolite Nanocrystals without Organic Templates for Selective CO ₂ Capture. Angewandte Chemie - International Edition, 2020, 59, 23491-23495.	13.8	61
51	Formation of PdO on Au–Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. Journal of Catalysis, 2019, 375, 32-43.	6.2	60
52	Reversing Titanium Oligomer Formation towards Highâ€Efficiency and Green Synthesis of Titaniumâ€Containing Molecular Sieves. Angewandte Chemie - International Edition, 2021, 60, 3443-3448.	13.8	58
53	Co ₃ (HCOO) ₆ Microporous Metal–Organic Framework Membrane for Separation of CO ₂ /CH ₄ Mixtures. Chemistry - A European Journal, 2011, 17, 12076-12083.	3.3	57
54	Direct Evidence for Single Molybdenum Atoms Incorporated in the Framework of MFI Zeolite Nanocrystals. Journal of the American Chemical Society, 2019, 141, 8689-8693.	13.7	57

#	Article	IF	Citations
55	Highly stable phosphine modified VOx/Al2O3 catalyst in propane dehydrogenation. Applied Catalysis B: Environmental, 2020, 274, 119089.	20.2	57
56	Growth of silicalite-1 films on gold substrates. Microporous Materials, 1997, 11, 149-160.	1.6	56
57	Thin molecular sieve films on noble metal substrates. Zeolites, 1997, 18, 387-390.	0.5	55
58	Deposition of zeolite A on vegetal fibers. Zeolites, 1996, 16, 31-34.	0.5	54
59	Continuous films of zeolite ZSM-5 on modified gold surfaces. Chemical Communications, 1997, , 15-16.	4.1	54
60	Ordered Micro/Mesoporous Composite Prepared as Thin Films. Journal of Physical Chemistry B, 2005, 109, 4485-4491.	2.6	54
61	Synthesis of titanium silicate ETS-10: The effect of tetrametylammonium on the crystallization kinetics. Zeolites, 1994, 14, 697-700.	0.5	53
62	Colloidal Nanocrystals of Zeolite \hat{l}^2 Stabilized in Alumina Matrix. Chemistry of Materials, 1999, 11, 2030-2037.	6.7	53
63	Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study. Physical Chemistry Chemical Physics, 2005, 7, 2756.	2.8	52
64	Defect-engineered zeolite porosity and accessibility. Journal of Materials Chemistry A, 2020, 8, 3621-3631.	10.3	52
65	Pure silica BETA colloidal zeolite assembled in thin films. Chemical Communications, 2003, , 326-327.	4.1	50
66	Closely Packed Zeolite Nanocrystals Obtained via Transformation of Porous Amorphous Silica. Chemistry of Materials, 2004, 16, 5452-5459.	6.7	50
67	Zeolite Nanoparticles for Selective Sorption of Plasma Proteins. Scientific Reports, 2015, 5, 17259.	3.3	50
68	Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance. Sensors and Actuators B: Chemical, 2020, 320, 128405.	7.8	50
69	Deposition of continuous silicalite-1 films on inorganic fibers. Microporous Materials, 1997, 8, 93-101.	1.6	49
70	Porosity of micro/mesoporous composites. Microporous and Mesoporous Materials, 2006, 92, 154-160.	4.4	49
71	Silver confined within zeolite EMT nanoparticles: preparation and antibacterial properties. Nanoscale, 2014, 6, 10859-10864.	5.6	49
72	Structure-Directing Agent Governs the Location of Silanol Defects in Zeolites. Chemistry of Materials, 2015, 27, 7577-7579.	6.7	49

#	Article	IF	CITATIONS
73	Crystallization kinetics of zeolite ZSM-5. Zeolites, 1992, 12, 210-215.	0.5	48
74	Preparation of nanosized micro/mesoporous composites. Materials Science and Engineering C, 2003, 23, 1001-1005.	7. 3	48
75	Synthesis of nanosized FAU-type zeolite. Studies in Surface Science and Catalysis, 1999, 125, 141-148.	1.5	47
76	Zeolite Nanoparticles Inhibit AÎ 2 â \in "Fibrinogen Interaction and Formation of a Consequent Abnormal Structural Clot. ACS Applied Materials & Structural Clot	8.0	47
77	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	38.1	47
78	Facile and fast determination of Si/Al ratio of zeolites using FTIR spectroscopy technique. Microporous and Mesoporous Materials, 2021, 311, 110683.	4.4	47
79	AlPO-18 nanocrystals synthesized under microwave irradiation. Journal of Materials Chemistry, 2006, 16, 514-518.	6.7	46
80	Transformation of amorphous silica colloids to nanosized MEL zeolite. Microporous and Mesoporous Materials, 2001, 50, 121-128.	4.4	44
81	Quantitative moisture measurements in lubricating oils by FTIR spectroscopy combined with solvent extraction approach. Microchemical Journal, 2011, 98, 177-185.	4.5	44
82	Zeolites in a good shape: Catalyst forming by extrusion modifies their performances. Microporous and Mesoporous Materials, 2020, 299, 110114.	4.4	44
83	Photochemistry of 2-(2â€ ⁻ -Hydroxyphenyl)benzothiazole Encapsulated in Nanosized Zeolites. Journal of Physical Chemistry A, 2004, 108, 10640-10648.	2.5	43
84	A powerful structure-directing agent for the synthesis of nanosized Al- and high-silica zeolite Beta in alkaline medium. Microporous and Mesoporous Materials, 2011, 142, 17-25.	4.4	42
85	Hierarchical zeolites. MRS Bulletin, 2016, 41, 689-693.	3.5	42
86	Adhesivity of molecular sieve films on metal substrates. Zeolites, 1996, 17, 462-465.	0.5	41
87	Confined Detection of High-Energy-Density Materials. Journal of Physical Chemistry C, 2007, 111, 6694-6699.	3.1	41
88	Environmentally benign synthesis of nanosized aluminophosphate enhanced by microwave heating. Green Chemistry, 2008, 10, 1043.	9.0	41
89	Discrete MnAlPO-5 nanocrystals synthesized by an ionothermal approach. Chemical Communications, 2009, , 1661.	4.1	41
90	Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles. Toxicology Letters, 2012, 215, 151-160.	0.8	41

#	Article	lF	Citations
91	Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicology Research, 2013, 2, 270.	2.1	41
92	Microwave synthesis of colloidal stable AIPO-5 nanocrystals with high water adsorption capacity and unique morphology. Materials Letters, 2014, 132, 126-129.	2.6	41
93	Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals. Materials Chemistry and Physics, 2015, 159, 38-45.	4.0	40
94	Tribochemical activation of seeds for rapid crystallization of zeolite Y. Zeolites, 1995, 15, 193-197.	0.5	39
95	Influence of metal substrate properties on the kinetics of zeolite film formation. Zeolites, 1995, 15, 679-683.	0.5	39
96	Nanosized molecular sieves utilized as an environmentally friendly alternative to antioxidants for lubricant oils. Green Chemistry, 2011, 13, 2435.	9.0	39
97	In Situ Incorporation of 2-(2-Hydroxyphenyl)benzothiazole within FAU Colloidal Crystals. Angewandte Chemie - International Edition, 2003, 42, 1611-1614.	13.8	38
98	Nanosized Gismondine Grown in Colloidal Precursor Solutions. Langmuir, 2004, 20, 5271-5276.	3 . 5	38
99	Optical Properties of Photopolymer Layers Doped with Aluminophosphate Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 16767-16775.	3.1	38
100	Vapor Responsive One-Dimensional Photonic Crystals from Zeolite Nanoparticles and Metal Oxide Films for Optical Sensing. Sensors, 2014, 14, 12207-12218.	3.8	38
101	AlPO ₄ -18 Seed Layers and Films by Secondary Growth. Chemistry of Materials, 2008, 20, 5721-5726.	6.7	37
102	Micro―to Macroscopic Observations of MnAlPOâ€5 Nanocrystal Growth in Ionicâ€Liquid Media. Chemistry - A European Journal, 2010, 16, 12890-12897.	3.3	37
103	Nanoparticle Alloy Formation by Radiolysis. Journal of Physical Chemistry C, 2018, 122, 12573-12588.	3.1	37
104	Design of an intercalated Nano-MoS2 hydrophobic catalyst with high rim sites to improve the hydrogenation selectivity in hydrodesulfurization reaction. Applied Catalysis B: Environmental, 2021, 286, 119907.	20.2	37
105	Selective Capture of Water Using Microporous Adsorbents To Increase the Lifetime of Lubricants. ChemSusChem, 2009, 2, 255-260.	6.8	34
106	Hybrid Sensors Fabricated by Inkjet Printing and Holographic Patterning. Chemistry of Materials, 2015, 27, 6097-6101.	6.7	34
107	CO ₂ Adsorption/Desorption in FAU Zeolite Nanocrystals: In Situ Synchrotron X-ray Powder Diffraction and in Situ Fourier Transform Infrared Spectroscopic Study. Journal of Physical Chemistry C, 2019, 123, 2361-2369.	3.1	34
108	Colloidal Zeolites as Host Matrix for Copper Nanoclusters. Chemistry of Materials, 2006, 18, 3373-3380.	6.7	33

#	Article	IF	CITATIONS
109	Complex H-bonded silanol network in zeolites revealed by IR and NMR spectroscopy combined with DFT calculations. Journal of Materials Chemistry A, 2021, 9, 27347-27352.	10.3	33
110	Ionothermal approach for synthesizing AIPO-5 with hexagonal thin-plate morphology influenced by various parameters at ambientÂpressure. Solid State Sciences, 2013, 25, 63-69.	3.2	32
111	Sodalite cages of EMT zeolite confined neutral molecular-like silver clusters. Microporous and Mesoporous Materials, 2017, 244, 74-82.	4.4	32
112	K-F zeolite nanocrystals synthesized from organic-template-free precursor mixture. Microporous and Mesoporous Materials, 2017, 249, 105-110.	4.4	32
113	Elucidation of Pt Clusters in the Micropores of Zeolite Nanoparticles Assembled in Thin Films. Journal of Physical Chemistry C, 2010, 114, 20974-20982.	3.1	31
114	Cold plasma as environmentally benign approach for activation of zeolite nanocrystals. Microporous and Mesoporous Materials, 2012, 158, 148-154.	4.4	31
115	Beta-MCM-41 micro-mesoporous catalysts in the hydroisomerization of n-heptane: Definition of an indexed isomerization factor as a performance descriptor. Microporous and Mesoporous Materials, 2019, 277, 17-28.	4.4	31
116	Flexible Template-Free RHO Nanosized Zeolite for Selective CO ₂ Adsorption. Chemistry of Materials, 2020, 32, 5985-5993.	6.7	31
117	Crossâ€Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation. Angewandte Chemie - International Edition, 2020, 59, 6284-6288.	13.8	31
118	Silicalite-1/polymer films with low-k dielectric constants. Applied Surface Science, 2004, 226, 155-160.	6.1	30
119	The Mosaic Structure of Zeolite Crystals. Angewandte Chemie, 2016, 128, 15273-15276.	2.0	30
120	Probing the BrÃ,nsted Acidity of the External Surface of Faujasiteâ€√ype Zeolites. ChemPhysChem, 2020, 21, 1873-1881.	2.1	30
121	Perovskite-Type LaCoO ₃ as an Efficient and Green Catalyst for Sustainable Partial Oxidation of Cyclohexane. Industrial & Engineering Chemistry Research, 2020, 59, 21322-21332.	3.7	29
122	The challenge of silanol species characterization in zeolites. Inorganic Chemistry Frontiers, 2022, 9, 1125-1133.	6.0	29
123	Label-free electrochemical immunosensor based on conductive Ag contained EMT-style nano-zeolites and the application for α-fetoprotein detection. Sensors and Actuators B: Chemical, 2018, 255, 2919-2926.	7.8	28
124	Zeolite nanoparticles as effective antioxidant additive for the preservation of palm oil-based lubricant. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58, 565-571.	5.3	27
125	Spray-dispersion of ultra-small EMT zeolite crystals in thin-film composite membrane for high-permeability nanofiltration process. Journal of Membrane Science, 2021, 622, 119045.	8.2	27
126	Self-processing photopolymer materials for versatile design and fabrication of holographic sensors and interactive holograms. Applied Optics, 2018, 57, E173.	1.8	26

#	Article	lF	CITATIONS
127	Unraveling the Diffusion Properties of Zeolite-Based Multicomponent Catalyst by Combined Gravimetric Analysis and IR Spectroscopy (AGIR). ACS Catalysis, 2020, 10, 6822-6830.	11.2	26
128	Investigation of the ion-exchanged forms of the microporous titanosilicate K2TiSi3O9·H2O. Microporous and Mesoporous Materials, 1999, 32, 287-296.	4.4	25
129	Synthesis of colloidal AlPO4-18 crystals and their use for supported film growth. Journal of Materials Chemistry, 2003, 13, 1526.	6.7	25
130	Advanced applications of zeolites. Studies in Surface Science and Catalysis, 2005, , 263-288.	1.5	25
131	<title>Holographic recording in nanoparticle-doped photopolymer</title> ., 2006, , .		25
132	Beads Comprising a Hierarchical Porous Core and a Microporous Shell. Journal of Physical Chemistry C, 2007, 111, 4535-4542.	3.1	25
133	Formation of colloidal molecular sieves: influence of silica precursor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217, 153-157.	4.7	24
134	Nanosized Zeolites Templated by Metalâ^'Amine Complexes. Chemistry of Materials, 2007, 19, 1203-1205.	6.7	24
135	High-Silica Zeolite- \hat{I}^2 : From Stable Colloidal Suspensions to Thin Films. Journal of Physical Chemistry C, 2008, 112, 14274-14280.	3.1	24
136	Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves. Journal of Optics (United Kingdom), 2011, 13, 044019.	2.2	24
137	Comparison of physicochemical properties of zorite and ETS-4. Materials Research Bulletin, 1996, 31, 163-169.	5. 2	23
138	Nanozeolites doped photopolymer layers with reduced shrinkage. Optics Express, 2011, 19, 25786.	3.4	23
139	Self-assembled titanosilicate TS-1 nanocrystals in hierarchical structures. Catalysis Today, 2011, 168, 112-117.	4.4	23
140	Green Hydrogen Separation from Nitrogen by Mixedâ€Matrix Membranes Consisting of Nanosized Sodalite Crystals. ChemSusChem, 2019, 12, 4529-4537.	6.8	23
141	Understanding the Fundamentals of Microporosity Upgrading in Zeolites: Increasing Diffusion and Catalytic Performances. Advanced Science, 2021, 8, e2100001.	11.2	23
142	Preparation of HKUST-1/PEI mixed-matrix membranes: Adsorption-diffusion coupling control of small gas molecules. Journal of Membrane Science, 2022, 643, 120070.	8.2	23
143	Stable Mesostructured Silicate Films Containing Nanosized Zeolite. Chemistry of Materials, 2003, 15, 2240-2246.	6.7	22
144	Micro/Mesoporous Composites. Studies in Surface Science and Catalysis, 2007, 168, 301-VI.	1.5	22

#	Article	IF	CITATIONS
145	Ethanol Recovery from Water Using Silicalite†Membrane: An Operando Infrared Spectroscopic Study. ChemPlusChem, 2012, 77, 437-444.	2.8	22
146	3D Study of the Morphology and Dynamics of Zeolite Nucleation. Chemistry - A European Journal, 2015, 21, 18316-18327.	3.3	22
147	Control of Na-EMT Zeolite Synthesis by Organic Additives. Crystal Growth and Design, 2015, 15, 1898-1906.	3.0	22
148	Synthesis of Cs-ABW nanozeolite in organotemplate-free system. Microporous and Mesoporous Materials, 2019, 277, 78-83.	4.4	22
149	Alkali Metal Cations Influence the CO ₂ Adsorption Capacity of Nanosized Chabazite: Modeling vs Experiment. ACS Applied Nano Materials, 2022, 5, 5578-5588.	5.0	22
150	Characterization of water in microporous titanium silicates. Journal of Materials Science Letters, 1997, 16, 1303-1304.	0.5	21
151	Nanoscale crystal orientation in silicalite-1 films studied by grazing incidence X-ray diffraction. Microporous and Mesoporous Materials, 2001, 43, 191-200.	4.4	21
152	Crystallization of nanosized MEL-type zeolite from colloidal precursors. Materials Science and Engineering C, 2002, 19, 111-114.	7.3	21
153	Nanosized Molecular Sieves. Collection of Czechoslovak Chemical Communications, 2003, 68, 2032-2054.	1.0	21
154	Molecular interaction of fibrinogen with zeolite nanoparticles. Scientific Reports, 2019, 9, 1558.	3.3	21
155	Emphasis on the Properties of Metalâ€Containing Zeolites Operating Outside the Comfort Zone of Current Heterogeneous Catalytic Reactions. Angewandte Chemie - International Edition, 2020, 59, 19414-19432.	13.8	21
156	Highly active Pd containing EMT zeolite catalyst for indirect oxidative carbonylation of methanol to dimethyl carbonate. Journal of Energy Chemistry, 2021, 52, 191-201.	12.9	21
157	The inner heterogeneity of ZSM-5 zeolite crystals. Journal of Materials Chemistry A, 2021, 9, 4203-4212.	10.3	21
158	Functionalized cubic mesostructured silica films. Materials Science and Engineering C, 2003, 23, 827-831.	7.3	20
159	Nondestructive Identification of Colloidal Molecular Sieves Stabilized in Water. Journal of Physical Chemistry B, 2005, 109, 17060-17065.	2.6	20
160	High-yield nanosized (Si)AlPO-41 using ethanol polarity equalization and co-templating synthesis approach. Nanoscale, 2015, 7, 5787-5793.	5.6	20
161	Thermal resonant zeolite-based gas sensor. Sensors and Actuators B: Chemical, 2017, 245, 179-182.	7.8	20
162	Synergy between a sulfur-tolerant Pt/Al2O3@sodalite core–shell catalyst and a CoMo/Al2O3 catalyst. Journal of Catalysis, 2018, 368, 89-97.	6.2	20

#	Article	IF	Citations
163	Strategy towards enhanced performance of zeolite catalysts: Raising effective diffusion coefficient versus reducing diffusion length. Chemical Engineering Journal, 2020, 385, 123800.	12.7	20
164	AlPO4-18 synthesized from colloidal precursors and its use for the preparation of thin films. Applied Surface Science, 2004, 226, 1-6.	6.1	19
165	High-Density Energetic Material Hosted in Pure Silica MFI-Type Zeolite Nanocrystals. Advanced Materials, 2006, 18, 2440-2443.	21.0	19
166	Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer. Journal of Optics, 2009, 11, 024016.	1.5	19
167	Zeolite films as building blocks for antireflective coatings and vapor responsive Bragg stacks. Dalton Transactions, 2014, 43, 8868-8876.	3.3	19
168	Microwave-green synthesis of AlPO-n and SAPO-n (n = 5 and 18) nanosized crystals and their assembly in layers. Microporous and Mesoporous Materials, 2019, 280, 256-263.	4.4	19
169	Influence of reactive radicals in cellulose fibres on the formation of zeolite coatings. Journal of the Chemical Society Chemical Communications, 1994, , 2087.	2.0	18
170	The effect of plastic deformation and thermal annealing of the copper substrate on the zeolite film formation. Journal of the Chemical Society Chemical Communications, 1994, , 979.	2.0	18
171	In Situ Infrared Molecular Detection Using Palladium-Containing Zeolite Films. Langmuir, 2011, 27, 14689-14695.	3.5	18
172	Effect of zeolite nanoparticles on the optical properties of diacetone acrylamide-based photopolymer. Optical Materials, 2014, 37, 181-187.	3.6	18
173	Water-soluble coumarin oligomer based ultra-sensitive iron ion probe and applications. Sensors and Actuators B: Chemical, 2020, 320, 128361.	7.8	18
174	Zeolite beta films synthesized from basic and near-neutral precursor solutions and gels. Materials Science and Engineering C, 2005, 25, 570-576.	7. 3	17
175	Colloidal LTL zeolite synthesized under microwave irradiation. Studies in Surface Science and Catalysis, 2005, , 11-18.	1.5	17
176	Synthesis of AlPO-5 with diol-substituted imidazolium-based organic template. Microporous and Mesoporous Materials, 2014, 194, 200-207.	4.4	17
177	Unlocking the potential of hidden sites in FAUJASITE: new insights in a proton transfer mechanism. Angewandte Chemie - International Edition, 2021, 60, 26702-26709.	13.8	17
178	A correlation between the fundamental properties of templates and the kinetics of ZSM-5 crystallization. Zeolites, 1993, 13, 102-106.	0.5	16
179	Optical properties of silica MFI doped acrylamide-based photopolymer. Journal of Optics, 2009, 11, 024015.	1.5	16
180	Hydrophobic Tungsten-Containing MFI-Type Zeolite Films for Exhaust Gas Detection. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12914-12919.	8.0	16

#	Article	IF	Citations
181	Interzeolite conversion of a micronsized FAU to a nanosized CHA zeolite free of organic structure directing agent with a high CO2 capacity. RSC Advances, 2020, 10, 42953-42959.	3.6	16
182	Intra-crystalline mesoporous ZSM-5 zeolite by grinding synthesis method. Microporous and Mesoporous Materials, 2020, 306, 110437.	4.4	16
183	Mechanical pressure-mediated Pd active sites formation in NaY zeolite catalysts for indirect oxidative carbonylation of methanol to dimethyl carbonate. Journal of Catalysis, 2021, 396, 269-280.	6.2	16
184	Elucidation of the reaction mechanism of indirect oxidative carbonylation of methanol to dimethyl carbonate on Pd/NaY catalyst: Direct identification of reaction intermediates. Journal of Catalysis, 2022, 412, 30-41.	6.2	16
185	Preparation of ZSM-5 films from template free precursors. Journal of Materials Chemistry, 1997, 7, 2341-2342.	6.7	15
186	Selective Conversion of Glucose to 5-Hydroxymethylfurfural by Using L-Type Zeolites with Different Morphologies. Catalysts, 2019, 9, 1073.	3.5	15
187	Crystallization pathway from a highly viscous colloidal suspension to ultra-small FAU zeolite nanocrystals. Journal of Materials Chemistry A, 2021, 9, 17492-17501.	10.3	15
188	Preparation of core–shell-like zeolites by diffusion controlled chemical etching. Inorganic Chemistry Frontiers, 2021, 8, 2144-2152.	6.0	15
189	On the crystallization mechanism of zeolite ZSM-5: Part 1. Kinetic compensation effect for the synthesis with some diamines. Zeolites, 1993, 13, 299-304.	0.5	14
190	Kinetic investigation of the effect of Na, K, Li and Ca on the crystallization of titanium silicate ETS-4. Zeolites, 1997, 18, 269-273.	0.5	14
191	Exceptionally Small Colloidal Zeolites Templated by Pd and Pt Amines. Langmuir, 2008, 24, 4310-4315.	3.5	14
192	Subnanometer CdS Clusters Self-Confined in MFI-Type Zeolite Nanoparticles and Thin Films. Langmuir, 2010, 26, 4459-4464.	3.5	14
193	Mineral oil regeneration using selective molecular sieves as sorbents. Chemosphere, 2010, 78, 591-598.	8.2	14
194	Detection of Harmful Gases by Copper-Containing Metal–Organic Framework Films. Journal of Physical Chemistry C, 2012, 116, 16593-16600.	3.1	14
195	Acute Toxicity of Silver Free and Encapsulated in Nanosized Zeolite for Eukaryotic Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13849-13854.	8.0	14
196	Nanosized zeolites as a gas delivery platform in a glioblastoma model. Biomaterials, 2020, 257, 120249.	11.4	14
197	Morphological effects on catalytic performance of LTL zeolites in acylation of 2-methylfuran enhanced by non-microwave instant heating. Materials Chemistry and Physics, 2020, 244, 122688.	4.0	14
198	Compatibility between Activity and Selectivity in Catalytic Oxidation of Benzyl Alcohol with Au–Pd Nanoparticles through Redox Switching of SnO <i></i> . ACS Applied Materials & Amp; Interfaces, 2021, 13, 49780-49792.	8.0	14

#	Article	IF	Citations
199	Unraveling the Effect of Silanol Defects on the Insertion of Single-Site Mo in the MFI Zeolite Framework. Inorganic Chemistry, 2022, 61, 1418-1425.	4.0	14
200	Femtochemistry of Guest Molecules Hosted in Colloidal Zeolites. Advanced Functional Materials, 2005, 15, 1973-1978.	14.9	13
201	Diverse copper clusters confined in microporous nanocrystals. Sensors and Actuators B: Chemical, 2007, 126, 338-343.	7.8	13
202	Capturing the Formation of Sub-nanometer Sized CdS Clusters in LTL Zeolite. Journal of Physical Chemistry C, 2014, 118, 6324-6334.	3.1	13
203	Ionothermal synthesis of FeAPO-5 in the presence of phosphorous acid. CrystEngComm, 2016, 18, 257-265.	2.6	13
204	Nanosized Sn-MFI zeolite for selective detection of exhaust gases. Materials and Design, 2016, 99, 574-580.	7.0	13
205	Emphasis on the Properties of Metalâ€Containing Zeolites Operating Outside the Comfort Zone of Current Heterogeneous Catalytic Reactions. Angewandte Chemie, 2020, 132, 19582-19600.	2.0	13
206	Incorporation of trivalent cations in NaX zeolite nanocrystals for the adsorption of O ₂ in the presence of CO ₂ . Physical Chemistry Chemical Physics, 2020, 22, 9934-9942.	2.8	13
207	The role of mixed alkali metal cations on the formation of nanosized CHA zeolite from colloidal precursor suspension. Journal of Colloid and Interface Science, 2021, 604, 350-357.	9.4	13
208	Stable EMT type zeolite/CsPbBr3 perovskite quantum dot nanocomposites for highly sensitive humidity sensors. Journal of Colloid and Interface Science, 2022, 616, 921-928.	9.4	13
209	Nanoparticles-induced inflammatory cytokines in human plasma concentration manner: an ignored factor at the nanobio-interface. Journal of the Iranian Chemical Society, 2015, 12, 317-323.	2.2	12
210	Iron loaded EMT nanosized zeolite with high affinity towards CO 2 and NO. Microporous and Mesoporous Materials, 2016, 232, 256-263.	4.4	12
211	Properties of methylene blue in the presence of zeolite nanoparticles. New Journal of Chemistry, 2016, 40, 4277-4284.	2.8	12
212	A Facile Route toward the Increase of Oxygen Content in Nanosized Zeolite by Insertion of Cerium and Fluorinated Compounds. Molecules, 2018, 23, 37.	3.8	12
213	Control the position of framework defects in zeolites by changing the symmetry of organic structure directing agents. Microporous and Mesoporous Materials, 2021, 315, 110899.	4.4	12
214	The degree of crystallinity of ZSM-5 determined by Raman spectroscopy. Journal of the Chemical Society Chemical Communications, 1994, , 1791.	2.0	11
215	Fe-containing mesoporous film hosts for carbon nanotubes. Materials Science and Engineering C, 2003, 23, 145-149.	7.3	11
216	Nanosecond probing of the early nucleation steps of silver atoms in colloidal zeolite by pulse radiolysis and flash photolysis techniques. Research on Chemical Intermediates, 2009, 35, 379-388.	2.7	11

#	Article	IF	CITATIONS
217	Platinum clusters confined in FAU–LTA hierarchical porous composite with a core–shell structure. Catalysis Today, 2011, 168, 140-146.	4.4	11
218	Photoreduction of Ag+ by diethylaniline in colloidal zeolite nanocrystals. Microporous and Mesoporous Materials, 2014, 194, 183-189.	4.4	11
219	Formation of copper nanoparticles in LTL nanosized zeolite: spectroscopic characterization. Physical Chemistry Chemical Physics, 2018, 20, 2880-2889.	2.8	11
220	LTL type nanozeolites utilized in surface photonics structures for environmental sensors. Microporous and Mesoporous Materials, 2018, 261, 268-274.	4.4	11
221	Highly stable Ni/ <scp>ZnOâ€Al₂O₃</scp> adsorbent promoted by <scp>TiO₂</scp> for reactive adsorption desulfurization. EcoMat, 2021, 3, e12114.	11.9	11
222	Engineering RHO Nanozeolite: Controlling the Particle Morphology, Al and Cation Content, Stability, and Flexibility. ACS Applied Energy Materials, 2022, 5, 6032-6042.	5.1	11
223	Green removal of aromatic organic pollutants from aqueous solutions with a zeolite–hemp composite. RSC Advances, 2012, 2, 3115.	3.6	10
224	Inhibition of Palm Oil Oxidation by Zeolite Nanocrystals. Journal of Agricultural and Food Chemistry, 2015, 63, 4655-4663.	5.2	10
225	Synthesis and encapsulation of fluorescein in zeolite Y. Microporous and Mesoporous Materials, 2016, 236, 79-84.	4.4	10
226	Combined alkali dissolution and re-assembly approach toward ZSM-5 mesostructures with extended lifetime in cumene cracking. Journal of Colloid and Interface Science, 2018, 529, 283-293.	9.4	10
227	Novel Strategy for the Synthesis of Ultraâ€Stable Singleâ€Site Moâ€ZSMâ€5 Zeolite Nanocrystals. Angewandte Chemie, 2020, 132, 19721-19728.	2.0	10
228	Synthesis of Discrete CHA Zeolite Nanocrystals without Organic Templates for Selective CO 2 Capture. Angewandte Chemie, 2020, 132, 23697-23701.	2.0	10
229	CO2 adsorption in nanosized RHO zeolites with different chemical compositions and crystallite sizes. Microporous and Mesoporous Materials, 2020, 306, 110394.	4.4	10
230	Thin Functional Zeolite Layer Supported on Infrared Resonant Nanoâ€Antennas for the Detection of Benzene Traces. Advanced Functional Materials, 2021, 31, 2101623.	14.9	10
231	Crystal growth of nanosized LTA zeolite from precursor colloids. Studies in Surface Science and Catalysis, 2002, , 223-229.	1.5	9
232	Formation of Copper Nanoparticles in LTL Nanosized Zeolite: Kinetics Study. Journal of Physical Chemistry C, 2016, 120, 26300-26308.	3.1	9
233	AlPO-5 nanocrystals templated by 1-ethyl-2,3-dimethylimidazolium hydroxide and their textural and water sorption properties. Materials Chemistry and Physics, 2017, 188, 49-57.	4.0	9
234	Micro- and macroscopic observations of the nucleation process and crystal growth of nanosized Cs-pollucite in an organotemplate-free hydrosol. New Journal of Chemistry, 2019, 43, 17433-17440.	2.8	9

#	Article	IF	CITATIONS
235	Spontaneous galvanic deposition of nanoporous Pd on microfibrous-structured Al-fibers for CO oxidative coupling to dimethyl oxalate. Catalysis Communications, 2019, 119, 39-41.	3.3	9
236	Ruthenium tris(2,2′-bipyridyl) complex encapsulated in nanosized faujasite zeolite as intracellular localization tracer. Journal of Colloid and Interface Science, 2021, 581, 919-927.	9.4	9
237	Room-Temperature Synthesis of BPH Zeolite Nanosheets Free of Organic Template with Enhanced Stability for Gas Separations. ACS Applied Nano Materials, 2021, 4, 24-28.	5.0	9
238	Mesostructured cellular foam silica supported Au–Pt nanoalloy: Enrichment of d-state electrons for promoting the catalytic synergy. Microporous and Mesoporous Materials, 2021, 316, 110982.	4.4	9
239	Photonic Materials for Holographic Sensing. Springer Series in Materials Science, 2016, , 315-359.	0.6	9
240	Dissolution Behavior and Varied Mesoporosity of Zeolites by NH ₄ F Etching. Chemistry - A European Journal, 2022, 28, e202104339.	3.3	9
241	Kinetics of zeolite ZSM-5 crystallization; template effect of propyl-substituted amines. Materials Research Bulletin, 1992, 27, 515-522.	5.2	8
242	Nanosized EDI-type molecular sieve. Microporous and Mesoporous Materials, 2008, 116, 258-266.	4.4	8
243	Effect of stabilizing binder and dispersion media on spin-on zeolite thin films. Thin Solid Films, 2010, 518, 2241-2246.	1.8	8
244	Nanosized MEL zeolite and GeSe2 chalcogenide layers as functional building blocks of tunable Bragg stacks. Journal of Materials Chemistry, 2012, 22, 18136.	6.7	8
245	Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation. Nanoscale Research Letters, 2015, 10, 956.	5 . 7	8
246	Optical fiber–Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing. Sensors and Actuators B: Chemical, 2017, 248, 359-366.	7.8	8
247	Application of Cu-FAU nanozeolites for decontamination of surfaces soiled with the ESKAPE pathogens. Microporous and Mesoporous Materials, 2017, 253, 233-238.	4.4	8
248	Passivated Surface of High Aluminum Containing ZSM-5 by Silicalite-1: Synthesis and Application in Dehydration Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 4839-4848.	6.7	8
249	Plasma Synthesis of Highly Dispersed Metal Clusters Confined in Nanosized Zeolite. ChemCatChem, 2010, 2, 1074-1078.	3.7	7
250	Metal loaded zeolite films with bi-modal porosity for selective detection of carbon monoxide. Microporous and Mesoporous Materials, 2014, 200, 326-333.	4.4	7
251	Hot-Electron Photodynamics of Silver-Containing Nanosized Zeolite Films Revealed by Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 26958-26966.	3.1	7
252	Detection of CO2 and O2 by iron loaded LTL zeolite films. Frontiers of Chemical Science and Engineering, 2018, 12, 94-102.	4.4	7

#	Article	IF	CITATIONS
253	Copper exchanged FAU nanozeolite as non-toxic nitric oxide and carbon dioxide gas carrier. Microporous and Mesoporous Materials, 2019, 280, 271-276.	4.4	7
254	Recyclable synthesis of Cs-ABW zeolite nanocrystals from non-reacted mother liquors with excellent catalytic henry reaction performance. Journal of Environmental Chemical Engineering, 2020, 8, 103579.	6.7	7
255	In-Situ Ellipsometric Study of the Optical Properties of LTL-Doped Thin Film Sensors for Copper(II) Ion Detection. Coatings, 2020, 10, 423.	2.6	7
256	Micro/Mesoporous Composites Based on Colloidal Zeolite Grown in Mesoporous Matrix. Collection of Czechoslovak Chemical Communications, 2005, 70, 1829-1847.	1.0	7
257	Towards a comprehensive understanding of mesoporosity in zeolite Y at the single particle level. Inorganic Chemistry Frontiers, 2022, 9, 2365-2373.	6.0	7
258	Ordered sodium zeolite-templated carbon with high first discharge capacity for sodium battery application. Microporous and Mesoporous Materials, 2022, 336, 111853.	4.4	7
259	Zeolite crystallization on mullite fibers. Studies in Surface Science and Catalysis, 1995, , 527-532.	1.5	6
260	In situ deposition of silicalite-1 on ZrO2 fibres. Journal of Materials Science Letters, 1996, 15, 840-841.	0.5	6
261	Synthesis of new cobalt aluminophosphate framework by opening a cobalt methylphosphonate layered material. CrystEngComm, 2017, 19, 5100-5105.	2.6	6
262	Synthesis of fluorescein by a ship-in-a-bottle method in different zeolites. New Journal of Chemistry, 2017, 41, 9969-9976.	2.8	6
263	Crystallization profile and morphological study of SAPO-5 templated by imidazolium cations of different functional groups. Microporous and Mesoporous Materials, 2020, 308, 110514.	4.4	6
264	Transformation of Discrete Amorphous Aluminosilicate Nanoparticles into Nanosized Zeolites. Advanced Materials Interfaces, 2021, 8, 2000634.	3.7	6
265	Preparation of Colloidal BEA Zeolite Functionalized with Pd Aggregates as a Precursor for Low Dimensionality Sensing Layer. Sensor Letters, 2010, 8, 497-501.	0.4	6
266	Advanced scanning electron microscopy techniques for structural characterization of zeolites. Inorganic Chemistry Frontiers, 2022, 9, 4225-4231.	6.0	6
267	Preparation of zeolite Y-vegetal fiber composite materials. Journal of Porous Materials, 1996, 3, 143-150.	2.6	5
268	Novel colloidal aluminophosphate synthesized under microwave irradiation. Journal of Materials Chemistry, 2004, 14, 2972-2974.	6.7	5
269	Tunable Bragg stacks from sol-gel derived Ta ₂ O ₅ and MEL zeolite films. Journal of Physics: Conference Series, 2012, 398, 012026.	0.4	5
270	Environmental Synthesis Concerns of Zeolites. , 2013, , 289-310.		5

#	Article	IF	Citations
271	Selective response of pyrylium-functionalized nanozeolites in the visible spectrum towards volatile organic compounds. Sensors and Actuators B: Chemical, 2017, 249, 114-122.	7.8	5
272	Zeolite Nanocrystals Protect the Performance of Organic Additives and Adsorb Acid Compounds during Lubricants Oxidation. Materials, 2019, 12, 2830.	2.9	5
273	Nanosized Cs-pollucite zeolite synthesized under mild condition and its catalytic behavior. Materials Research Express, 2019, 6, 025026.	1.6	5
274	Access to sodalite cages in ion-exchanged nanosized FAU zeolites probed by hyperpolarized 129Xe NMR and DFT calculations. Microporous and Mesoporous Materials, 2022, 338, 111965.	4.4	5
275	On the crystallization mechanism of zeolite ZSM-5: Part 2. MNDO calculations of basic characteristics of some diamines used as templates. Zeolites, 1993, 13, 305-308.	0.5	4
276	In Situ Incorporation of 2-(2-Hydroxyphenyl)benzothiazole within FAU Colloidal Crystals. Angewandte Chemie, 2003, 115, 1649-1652.	2.0	4
277	Effect of crystal morphology on the orientation of LTL-type zeolite films. Studies in Surface Science and Catalysis, 2005, 158, 367-374.	1.5	4
278	Transformation of hollow ZnFe-ZIF-8 nanocrystals into hollow ZnFe–N/C electrocatalysts for the oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 21183-21191.	2.8	4
279	Atomic-Insight into Zeolite Catalyst Formingâ€"an Advanced NMR Study. Journal of Physical Chemistry C, 2021, 125, 20028-20034.	3.1	4
280	Unlocking the potential of hidden sites in FAUJASITE: new insights in a proton transfer mechanism. Angewandte Chemie, 0 , , .	2.0	4
281	Modulation of surface chemistry by boron modification to achieve a superior VOX/Al2O3 catalyst in propane dehydrogenation. Catalysis Today, 2022, 402, 248-258.	4.4	4
282	Analysis of zeolite crystallization by using the kinetic compensation effect. Materials Research Bulletin, 1993, 28, 915-922.	5.2	3
283	Title is missing!. Journal of Materials Science Letters, 2003, 22, 751-753.	0.5	3
284	Colloidal molecular sieves: Model system for kinetic study of crystal growth process. Studies in Surface Science and Catalysis, 2004, 154, 163-170.	1.5	3
285	Structural properties of LTA films assembled from aluminosilicate clear solutions and dense gels: A gid X-ray study. Studies in Surface Science and Catalysis, 2004, , 717-724.	1.5	3
286	Copper-containing nanoporous films. Superlattices and Microstructures, 2008, 44, 617-625.	3.1	3
287	Microfabricated test structures for thermal gas sensor. , 2016, , .		3
288	Encapsulation of fluorescein into nanozeolites L and Y. Microporous and Mesoporous Materials, 2018, 260, 70-75.	4.4	3

#	Article	IF	CITATIONS
289	Effects of various alkali metal cations on the synthesis, crystallization and catalytic properties of NKX-2 aluminophosphites. Materials Chemistry and Physics, 2019, 222, 81-86.	4.0	3
290	Crossâ€Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation. Angewandte Chemie, 2020, 132, 6343-6347.	2.0	3
291	Thermal analysis of the crystallization of SAPO-5. Thermochimica Acta, 1995, 264, 59-66.	2.7	2
292	Grazing incidence synchrotron X-ray diffraction study of crystal orientation in microporous films. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 160-164.	1.4	2
293	MFI-type materials prepared by co-condensation synthesis approach. Catalysis Today, 2013, 204, 66-72.	4.4	2
294	Compositional Changes for Reduction of Polymerisation-Induced Shrinkage in Holographic Photopolymers. Advances in Materials Science and Engineering, 2016, 2016, 1-11.	1.8	2
295	Nanosized Na-EMT and Li-EMT zeolites: selective sorption of water and methanol studied by a combined IR and TG approach. Physical Chemistry Chemical Physics, 2016, 18, 30585-30594.	2.8	2
296	\hat{l}^3 -Radiolysis preparation of nanometer-sized cadmium sulphide quantum dots stabilized in nanozeolite X and ZSM-5. New Journal of Chemistry, 2018, 42, 5465-5470.	2.8	2
297	Hotâ€Electron Photodynamics in Silverâ€Containing BEAâ€Type Nanozeolite Studied by Femtosecond Transient Absorption Spectroscopy. ChemPhysChem, 2020, 21, 2634-2643.	2.1	2
298	Reversing Titanium Oligomer Formation towards Highâ€Efficiency and Green Synthesis of Titaniumâ€Containing Molecular Sieves. Angewandte Chemie, 2021, 133, 3485-3490.	2.0	2
299	Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids. Angewandte Chemie - International Edition, 1999, 38, 3201-3204.	13.8	2
300	Hydroxyl environments in zeolites probed by deuterium solid-state MAS NMR combined with IR spectroscopy. Inorganic Chemistry Frontiers, 2022, 9, 2964-2968.	6.0	2
301	Inhibition of lubricant degradation by nanoporous materials. Studies in Surface Science and Catalysis, 2008, 174, 569-572.	1.5	1
302	Recent and emerging applications of holographic photopolymers and nanocomposites. , 2010, , .		1
303	Holographic recording in charged photopolymerisable nanocomposites. , 2010, , .		1
304	HOLOGRAPHIC RECORDING IN CORONA CHARGED ACRYLAMIDE-BASED MFI-ZEOLITE PHOTOPOLYMER. Journal of Nonlinear Optical Physics and Materials, 2011, 20, 271-279.	1.8	1
305	Chemical sensing via single input — Multi output approach. , 2015, , .		1
306	Effects of Synthesis Parameters on the Crystallization Profile and Morphological Properties of SAPO-5 Templated by 1-Benzyl-2,3-Dimethylimidazolium Hydroxide. Crystals, 2021, 11, 279.	2.2	1

#	Article	IF	CITATIONS
307	Effect of Sodium Concentration on the Synthesis of Faujasite by Two-step Synthesis Procedure. Chemical Research in Chinese Universities, 2021, 37, 1137.	2.6	1
308	Efficient hydrodesulfurization of dibenzothiophene over core–shell Ni/Al ₂ O ₃ @SOD and Mo/Al ₂ O ₃ composite catalysts. Inorganic Chemistry Frontiers, 2022, 9, 3384-3391.	6.0	1
309	Scalable solvent-free synthesis of aggregated nanosized single-phase cancrinite zeolite. Materials Today Communications, 2022, 32, 103879.	1.9	1
310	Spin-coating induced self-assembly of pure silica and Fe-containing mesoporous films. Studies in Surface Science and Catalysis, 2002, 142, 1465-1472.	1.5	0
311	A compact electronic speckle pattern interferometry system using a photopolymer reflection holographic optical element. , 2005, , .		0
312	Optical properties of photopolymerisable nanocomposites containing zeolite nanoparticles. , 2009, , .		0
313	Photoactive Metal-Containing Zeolitic Materials for Sensing and Light-to-Chemical Energy Conversion., 2019,, 331-349.		0
314	Offretite Zeolite Single Crystals Synthesized by Amphiphile-Templating Approach. Molecules, 2021, 26, 2238.	3.8	0