Lisa A Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2748393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ogre-faced Spider, Net Casting Spider, Gladiator Spider Deinopis spinosa (Marx, 1889) (Arachnida:) Tj ETQq1 1 (D.784314	rgBT /Overloo
2	Blood-red colour as a prey choice cue for mosquito specialist predators. Animal Behaviour, 2022, 188, 85-97.	0.8	2
3	Sexually dimorphic dorsal coloration in a jumping spider: testing a potential case of sex-specific mimicry. Royal Society Open Science, 2021, 8, 210308.	1.1	Ο
4	Males respond to substrate-borne, not airborne, female chemical cues in the jumping spider, Habronattus pyrrithrix (Araneae: Salticidae). Journal of Arachnology, 2021, 49, .	0.3	3
5	Lack of neophobic responses to color in a jumping spider that uses color cues when foraging (Habronattus pyrrithrix). PLoS ONE, 2021, 16, e0254865.	1.1	2
6	Alternative responses by two species of jumping spiders to unpalatability and toxicity in prey. Journal of Arachnology, 2021, 49, .	0.3	1
7	Intraspecific variation in responses to aposematic prey in a jumping spider (<i>Phidippus regius</i>). Ethology, 2020, 126, 1089-1097.	0.5	2
8	Influence of seeing a red face during the male–male encounters of mosquito-specialist spiders. Learning and Behavior, 2020, 48, 104-112.	0.5	3
9	Methods for independently manipulating palatability and color in small insect prey. PLoS ONE, 2020, 15, e0231205.	1.1	6
10	Hemipteran defensive odors trigger predictable color biases in jumping spider predators. Scientific Reports, 2020, 10, 21898.	1.6	6
11	The role of male coloration and ornamentation in potential alternative mating strategies of the dimorphic jumping spider, Maevia inclemens. Behavioral Ecology and Sociobiology, 2019, 73, 1.	0.6	7
12	Prey colour biases in jumping spiders (<i>Habronattus brunneus</i>) differ across populations. Ethology, 2019, 125, 351-361.	0.5	11
13	Variation in activity rates may explain sex-specific dorsal color patterns in Habronattus jumping spiders. PLoS ONE, 2019, 14, e0223015.	1.1	13
14	Odor alters color preference in a foraging jumping spider. Behavioral Ecology, 2018, 29, 833-839.	1.0	16
15	Specialists and generalists coexist within a population of spider-hunting mud dauber wasps. Behavioral Ecology, 2017, 28, 890-898.	1.0	25
16	Frequent misdirected courtship in a natural community of colorful Habronattus jumping spiders. PLoS ONE, 2017, 12, e0173156.	1.1	11
17	Flexible color learning in an invertebrate predator: <i>Habronattus</i> jumping spiders can learn to prefer or avoid red during foraging. Behavioral Ecology, 2016, 27, 520-529.	1.0	41
18	Spectral filtering enables trichromatic vision in colorful jumping spiders. Current Biology, 2015, 25, R403-R404.	1.8	82

LISA A TAYLOR

#	Article	IF	CITATIONS
19	From spiderling to senescence: ontogeny of color in the jumping spider,Habronattus pyrrithrix. Journal of Arachnology, 2014, 42, 268-276.	0.3	9
20	Colour use by tiny predators: jumping spiders show colour biases during foraging. Animal Behaviour, 2014, 90, 149-157.	0.8	54
21	Natural variation in condition-dependent display colour does not predict male courtship success in a jumping spider. Animal Behaviour, 2014, 93, 267-278.	0.8	17
22	Male ornamental coloration improves courtship success in a jumping spider, but only in the sun. Behavioral Ecology, 2013, 24, 955-967.	1.0	53
23	Condition dependence of male display coloration in a jumping spider (Habronattus pyrrithrix). Behavioral Ecology and Sociobiology, 2011, 65, 1133-1146.	0.6	41
24	A novel method for quantifying the glossiness of animals. Behavioral Ecology and Sociobiology, 2010, 64, 1047-1055.	0.6	20
25	Animal Coloration: Sexy Spider Scales. Current Biology, 2007, 17, R592-R593.	1.8	15