

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2748121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. Journal of Applied Physics, 2000, 87, 7227-7231.	1.1	253
2	Analytic Solution for Eshelby's Problem of an Inclusion of Arbitrary Shape in a Plane or Half-Plane. Journal of Applied Mechanics, Transactions ASME, 1999, 66, 315-523.	1.1	160
3	Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Science China: Physics, Mechanics and Astronomy, 2010, 53, 536-544.	2.0	158
4	Noncoaxial resonance of an isolated multiwall carbon nanotube. Physical Review B, 2002, 66, .	1.1	136
5	Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips. Journal of Applied Physics, 2001, 89, 3426-3433.	1.1	129
6	Sound wave propagation in multiwall carbon nanotubes. Journal of Applied Physics, 2003, 93, 4801-4806.	1.1	124
7	A circular inclusion with circumferentially inhomogeneous interface in antiplane shear. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1997, 453, 2551-2572.	1.0	105
8	Applicability and Limitations of Simplified Elastic Shell Equations for Carbon Nanotubes. Journal of Applied Mechanics, Transactions ASME, 2004, 71, 622-631.	1.1	105
9	Terahertz Vibration of Short Carbon Nanotubes Modeled as Timoshenko Beams. Journal of Applied Mechanics, Transactions ASME, 2005, 72, 10-17.	1.1	92
10	Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces. Journal of Applied Physics, 2006, 99, 064303.	1.1	81
11	Eshelby's problem for two–dimensional piezoelectric inclusions of arbitrary shape. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2000, 456, 1051-1068.	1.0	69
12	Relevance of Timoshenko-beam model to microtubules of low shear modulus. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 41, 213-219.	1.3	66
13	Uniformity of Stresses Within a Three-Phase Elliptic Inclusion in Anti-Plane Shear. Journal of Elasticity, 1998, 52, 121-128.	0.9	57
14	Interfacial Thermal Stresses in Bimaterial Elastic Beams: Modified Beam Models Revisited. Journal of Electronic Packaging, Transactions of the ASME, 2002, 124, 141-146.	1.2	56
15	Eshelby inclusion of arbitrary shape in an anisotropic plane or half-plane. Acta Mechanica, 2003, 160, 219-234.	1.1	55
16	Length-dependence of flexural rigidity as a result of anisotropic elastic properties of microtubules. Biochemical and Biophysical Research Communications, 2006, 349, 1145-1150.	1.0	53
17	A Circular Inclusion with Inhomogeneously Imperfect Interface in Plane Elasticity. Journal of Elasticity, 1999, 55, 19-41.	0.9	52
18	On complex-variable formulation for finite plane elastostatics of harmonic materials. Acta Mechanica, 2002, 156, 219-234.	1.1	52

#	Article	IF	CITATIONS
19	A New Method for an Inhomogeneity with Stepwise Graded Interphase under Thermomechanical Loadings. Journal of Elasticity, 1999, 56, 107-127.	0.9	48
20	Surface wrinkling of two mutually attracting elastic thin films due to van der Waals forces. Journal of Applied Physics, 2001, 90, 6098-6104.	1.1	41
21	A strain-consistent elastic plate model with surface elasticity. Continuum Mechanics and Thermodynamics, 2016, 28, 263-273.	1.4	38
22	A Circular Inclusion With Circumferentially Inhomogeneous Sliding Interface in Plane Elastostatics. Journal of Applied Mechanics, Transactions ASME, 1998, 65, 30-38.	1.1	37
23	Uniform stress fields inside multiple inclusions in an elastic infinite plane under plane deformation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140933.	1.0	35
24	Title is missing!. Journal of Materials Science, 2000, 35, 5575-5579.	1.7	33
25	Stress Analysis of an Elliptic Inclusion with Imperfect Interface in Plane Elasticity. Journal of Elasticity, 2001, 62, 25-46.	0.9	32
26	Integral equation methods in plane-strain elasticity with boundary reinforcement. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454, 2223-2242.	1.0	30
27	Numerical investigation of speed dependent dynamic fracture toughness of line pipe steels. Engineering Fracture Mechanics, 2013, 99, 214-222.	2.0	30
28	Surface tension-induced stress concentration around a nanosized hole of arbitrary shape in an elastic half-plane. Meccanica, 2014, 49, 2847-2859.	1.2	27
29	Stress field around an arbitrarily shaped nanosized hole with surface tension. Acta Mechanica, 2014, 225, 3453-3462.	1.1	27
30	A two–dimensional Eshelby problem for two bonded piezoelectric half–planes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 457, 865-883.	1.0	26
31	Elastic fields in two jointed half-planes with an inclusion of arbitrary shape. Zeitschrift Fur Angewandte Mathematik Und Physik, 2001, 52, 18-32.	0.7	26
32	Buckling of empty spherical viruses under external pressure. Journal of Applied Physics, 2009, 105, 124701.	1.1	25
33	Elastic fields in two imperfectly bonded half-planes with a thermal inclusion of arbitrary shape. Zeitschrift Fur Angewandte Mathematik Und Physik, 2007, 58, 488-509.	0.7	23
34	Thermoelastic dissipation of hollow micromechanical resonators. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2341-2352.	1.3	22
35	Effect of interphase layers on thermal stresses within an elliptical inclusion. Journal of Applied Physics, 1998, 84, 4872-4879.	1.1	21
36	Thermoelastic dissipation of nanowire resonators with surface stress. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1243-1248.	1.3	21

#	Article	IF	CITATIONS
37	Modified von Kármán equations for elastic nanoplates with surface tension and surface elasticity. International Journal of Non-Linear Mechanics, 2017, 88, 67-73.	1.4	20
38	Surface Instability of an Elastic Thin Film Interacting With a Suspended Elastic Plate. Journal of Applied Mechanics, Transactions ASME, 2002, 69, 97-103.	1.1	19
39	Determination of two key parameters of a cohesive zone model for pipeline steels based on uniaxial stress-strain curve. Engineering Fracture Mechanics, 2016, 163, 55-65.	2.0	19
40	An elliptical liquid inclusion in an infinite elastic plane. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170813.	1.0	18
41	Surface Instability of a Semi-Infinite Elastic Body Under Surface van der Waals Forces. Journal of Applied Mechanics, Transactions ASME, 2004, 71, 138-140.	1.1	18
42	Strain rate effects on dynamic fracture of pipeline steels: Finite element simulation. International Journal of Pressure Vessels and Piping, 2015, 126-127, 1-7.	1.2	17
43	Large-Deflection Effect on Thermoelastic Dissipation of Microbeam Resonators. Journal of Thermal Stresses, 2012, 35, 1076-1094.	1.1	16
44	Non-elliptical inclusions that achieve uniform internal strain fields in an elastic half-plane. Acta Mechanica, 2015, 226, 3845-3863.	1.1	16
45	A hybrid complex-variable solution for piezoelectric/isotropic elastic interfacial cracks. International Journal of Fracture, 2008, 152, 169-178.	1.1	15
46	High-order subharmonic parametric resonance of nonlinearly coupled micromechanical oscillators. European Physical Journal B, 2007, 58, 411-421.	0.6	14
47	Localized buckling of a microtubule surrounded by randomly distributed cross linkers. Physical Review E, 2013, 88, 012701.	0.8	14
48	An alternative method for indentation of an elastic thin beam by a rigid indenter. International Journal of Mechanical Sciences, 2018, 149, 508-513.	3.6	14
49	Finite deformations at the vertex of a bi-material wedge. International Journal of Fracture, 1997, 84, 325-358.	1.1	13
50	Stress Analysis of Thermal Inclusions With Interior Voids and Cracks. Journal of Electronic Packaging, Transactions of the ASME, 2000, 122, 192-199.	1.2	13
51	Vibration isolation of few-layer graphene sheets. International Journal of Solids and Structures, 2020, 185-186, 78-88.	1.3	12
52	High-order subharmonic parametric resonance of multiple nonlinearly coupled micromechanical nonlinear oscillators. Acta Mechanica, 2010, 212, 69-81.	1.1	9
53	Surface tension-induced interfacial stresses around a nanoscale inclusion of arbitrary shape. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	0.7	9
54	Spherical indentation of an elastic layer on a rigid substrate revisited. Thin Solid Films, 2019, 669, 500-508.	0.8	9

#	Article	IF	CITATIONS
55	Effect of a thin surface coating layer on thermal stresses within an elastic half-plane. Acta Mechanica, 2006, 185, 227-243.	1.1	8
56	A speed-dependent cohesive zone model for moving cracks with non-uniform traction force. Engineering Fracture Mechanics, 2014, 117, 12-27.	2.0	8
57	Analysis of energy absorptions in drop-weight tear tests of pipeline steel. Engineering Fracture Mechanics, 2016, 160, 138-146.	2.0	8
58	Negative effective mass of a filled carbon nanotube. International Journal of Mechanical Sciences, 2017, 134, 174-181.	3.6	8
59	Instability of a Large Coupled Microbeam Array Initialized at Its Two Ends. Journal of Adhesion, 2007, 83, 195-221.	1.8	7
60	Surface energy-driven adhesion of two opposing microcantilevers. Acta Mechanica, 2006, 184, 33-45.	1.1	6
61	A study on the Gurtin–Murdoch model for spherical solids with surface tension. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	0.7	6
62	Surface tension-driven instability of a soft elastic rod revisited. International Journal of Solids and Structures, 2022, 241, 111491.	1.3	6
63	Imperfection sensitivity of pressured buckling of biopolymer spherical shells. Physical Review E, 2016, 93, 062403.	0.8	5
64	Axisymmetric indentation of an elastic thin plate by a rigid sphere revisited. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 1436-1446.	0.9	5
65	Asymmetric indentation of an elastic beam by a rigid cylinder. Zeitschrift Fur Angewandte Mathematik Und Physik, 2018, 69, 1.	0.7	5
66	Metamaterial-like vibration of doublewalled carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 107, 196-202.	1.3	5
67	Effective mass density of rigid sphere-reinforced elastic composites. Meccanica, 2021, 56, 1209-1221.	1.2	5
68	A modified cohesive zone model for a highâ€speed expanding crack. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 1013-1024.	1.7	4
69	Localized Vibration of a Microtubule Surrounded by Randomly Distributed Cross Linkers. Journal of Biomechanical Engineering, 2014, 136, .	0.6	4
70	Temperature Effects on Fracture Toughness Parameters for Pipeline Steels. International Journal of Steel Structures, 2018, 18, 1754-1760.	0.6	4
71	A simplified metaelastic model for coated sphere-filled random composites. Mathematics and Mechanics of Solids, 2021, 26, 939-953.	1.5	4
72	Metamaterial Vibration of Tensioned Circular Few-Layer Graphene Sheets. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	4

#	Article	IF	CITATIONS
73	Compressed microtubules: Splitting or buckling. Journal of Applied Physics, 2012, 111, 064701.	1.1	3
74	A refined cohesive zone model that accounts for inertia of cohesive zone of a moving crack. Mechanics Research Communications, 2016, 76, 78-85.	1.0	3
75	A simple criterion for finite time stability with application to impacted buckling of elastic columns. Applied Mathematics and Mechanics (English Edition), 2018, 39, 305-316.	1.9	3
76	Adhesion of an elastic sphere on a tensioned membrane. Mathematics and Mechanics of Solids, 2020, 25, 1534-1543.	1.5	3
77	Effects of a compliant interphase layer on internal thermal stresses within an elliptic inhomogeneity in an elastic medium. Zeitschrift Fur Angewandte Mathematik Und Physik, 2001, 52, 317-341.	0.7	2
78	Terahertz wave propagation in multiwall carbon nanotubes. , 0, , .		2
79	Effect of microcracking on electric-field-induced stress intensity factors in dielectric ceramics. Philosophical Magazine, 2003, 83, 277-294.	0.7	2
80	A Strain Rate-Dependent Finite Element Model of Drop-Weight Tear Tests for Pipeline Steels. , 2014, , .		2
81	Free vibration of biopolymer spherical shells of high structural heterogeneity. AIP Advances, 2018, 8, 075006.	0.6	2
82	Discussion: "Common Errors on Mapping of Nonelliptic Curves in Anisotropic Elasticity―(Ting, T. C. T.,) Tj E 687-687.	۲Qq0 0 0 ۱ 1.1	gBT /Overloc 1
83	Title is missing!. Zeitschrift Fur Angewandte Mathematik Und Physik, 2002, 53, 621-633.	0.7	1
84	Geometrical shape of in-plane inclusion characterized by polynomial internal stress field under uniform eigenstrains. Applied Mathematics and Mechanics (English Edition), 2016, 37, 1113-1130.	1.9	1
85	Post-buckling of a pressured biopolymer spherical shell with the mode interaction. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170834.	1.0	1
86	An extended JKR model for adhesion of a rigid sphere on a supported compressible elastic thin layer. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	0.7	1
87	An analytical solution to the adhesive cylindrical indentation of a compressible elastic thin layer. Journal of Adhesion, 2020, , 1-19.	1.8	1
88	On the Directional Stability of a Propagating Crack. Journal of Applied Mechanics, Transactions ASME, 1995, 62, 539-540.	1.1	0
89	STABILITY OF A PROPAGATING INTERPHASE BOUNDARY IN A THERMOPLASTIC MATERIAL. Journal of Thermal Stresses, 1995, 18, 621-634.	1.1	0
90	Pressure-induced polygonization of filled multiwall carbon nanotube. , 0, , .		0

#	Article	IF	CITATIONS
91	Flow-induced Vibration and Instability of Carbon Nanotubes. , 0, , .		0
92	Best upper bounds on strain energy and surface displacements of an elastic body under boundary tractions. Acta Mechanica, 2012, 223, 2197-2205.	1.1	0