Luc Vallieres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2747772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NTPDase8 protects mice from intestinal inflammation by limiting P2Y ₆ receptor activation: identification of a new pathway of inflammation for the potential treatment of IBD. Gut, 2022, 71, 43-54.	12.1	23
2	B cell-dependent EAE induces visual deficits in the mouse with similarities to human autoimmune demyelinating diseases. Journal of Neuroinflammation, 2022, 19, 54.	7.2	6
3	A light-inducible protein clustering system for in vivo analysis of α-synuclein aggregation in Parkinson disease. PLoS Biology, 2022, 20, e3001578.	5.6	12
4	Conditional Deletions of Hdc Confirm Roles of Histamine in Anaphylaxis and Circadian Activity but Not in Autoimmune Encephalomyelitis. Journal of Immunology, 2021, 206, 2029-2037.	0.8	4
5	MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain, 2019, 142, 2979-2995.	7.6	51
6	Ultrastructural evidence of microglial heterogeneity in Alzheimer's disease amyloid pathology. Journal of Neuroinflammation, 2019, 16, 87.	7.2	73
7	Neutrophil perversion in demyelinating autoimmune diseases: Mechanisms to medicine. Autoimmunity Reviews, 2017, 16, 294-307.	5.8	39
8	ICAM1+ neutrophils promote chronic inflammation via ASPRV1 in B cell–dependent autoimmune encephalomyelitis. JCI Insight, 2017, 2, .	5.0	48
9	Dark microglia: A new phenotype predominantly associated with pathological states. Clia, 2016, 64, 826-839.	4.9	325
10	Interleukin-36Î ³ is expressed by neutrophils and can activate microglia, but has no role in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2015, 12, 173.	7.2	33
11	CXCL10 Triggers Early Microglial Activation in the Cuprizone Model. Journal of Immunology, 2015, 194, 3400-3413.	0.8	115
12	GPR84 deficiency reduces microgliosis, but accelerates dendritic degeneration and cognitive decline in a mouse model of Alzheimer's disease. Brain, Behavior, and Immunity, 2015, 46, 112-120.	4.1	50
13	Rapid externalization of 27-kDa heat shock protein (HSP27) and atypical cell death in neutrophils treated with the sphingolipid analog drug FTY720. Journal of Leukocyte Biology, 2015, 98, 591-599.	3.3	15
14	The Inflammasome Pyrin Contributes to Pertussis Toxin-Induced IL-1β Synthesis, Neutrophil Intravascular Crawling and Autoimmune Encephalomyelitis. PLoS Pathogens, 2014, 10, e1004150.	4.7	73
15	Mediators of Neuroinflammation. Mediators of Inflammation, 2013, 2013, 1-2.	3.0	8
16	Several Classical Mouse Inbred Strains, Including DBA/2, NOD/Lt, FVB/N, and SJL/J, Carry a Putative Loss-of-Function Allele of Gpr84. Journal of Heredity, 2013, 104, 565-571.	2.4	17
17	Transplanted Bone Marrow Cells Do Not Provide New Oocytes But Rescue Fertility in Female Mice Following Treatment With Chemotherapeutic Agents. Cellular Reprogramming, 2012, 14, 123-129.	0.9	26
18	CXCL1 can be regulated by IL-6 and promotes granulocyte adhesion to brain capillaries during bacterial toxin exposure and encephalomyelitis. Journal of Neuroinflammation, 2012, 9, 18.	7.2	73

LUC VALLIERES

#	Article	IF	CITATIONS
19	Crawling Phagocytes Recruited in the Brain Vasculature after Pertussis Toxin Exposure through IL6, ICAM1 and ITGαM. Brain Pathology, 2011, 21, 661-671.	4.1	20
20	Matrix metalloproteinase 2 attenuates brain tumour growth, while promoting macrophage recruitment and vascular repair. Journal of Pathology, 2011, 224, 222-233.	4.5	9
21	Construction of a ganciclovir-sensitive lentiviral vector to assess the influence of angiopoietin-3 and soluble Tie2 on glioma growth. Journal of Neuro-Oncology, 2010, 99, 1-11.	2.9	10
22	Trabedersen, a TGFbeta2-specific antisense oligonucleotide for the treatment of malignant gliomas and other tumors overexpressing TGFbeta2. IDrugs: the Investigational Drugs Journal, 2009, 12, 445-53.	0.7	12
23	Reduced Glioma Growth Following Dexamethasone or Antiâ€Angiopoietin 2 Treatment. Brain Pathology, 2008, 18, 401-414.	4.1	40
24	Rod-Shaped Monocytes Patrol the Brain Vasculature and Give Rise to Perivascular Macrophages under the Influence of Proinflammatory Cytokines and Angiopoietin-2. Journal of Neuroscience, 2008, 28, 10187-10199.	3.6	80
25	Increased Glioma Growth in Mice Depleted of Macrophages. Cancer Research, 2007, 67, 8874-8881.	0.9	97
26	Identification of genes preferentially expressed by microglia and upregulated during cuprizone-induced inflammation. Glia, 2007, 55, 777-789.	4.9	80
27	G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions. Glia, 2007, 55, 790-800.	4.9	105
28	Mouse model for ablation of proliferating microgliain acute CNS injuries. Glia, 2006, 53, 331-337.	4.9	61
29	Tumor Necrosis Factor Reduces Brain Tumor Growth by Enhancing Macrophage Recruitment and Microcyst Formation. Cancer Research, 2005, 65, 3928-3936.	0.9	71
30	Expression of the $\hat{l}\pm4$ Integrin Subunit Gene Promoter Is Modulated by the Transcription Factor Pax-6 in Corneal Epithelial Cells. , 2004, 45, 1692.		25
31	Bone Marrow-Derived Cells that Populate the Adult Mouse Brain Preserve Their Hematopoietic Identity. Journal of Neuroscience, 2003, 23, 5197-5207.	3.6	220
32	Reduced Hippocampal Neurogenesis in Adult Transgenic Mice with Chronic Astrocytic Production of Interleukin-6. Journal of Neuroscience, 2002, 22, 486-492.	3.6	528
33	How the Blood Talks to the Brain Parenchyma and the Paraventricular Nucleus of the Hypothalamus During Systemic Inflammatory and Infectious Stimuli. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 22-38.	1.8	226
34	How the Blood Talks to the Brain Parenchyma and the Paraventricular Nucleus of the Hypothalamus During Systemic Inflammatory and Infectious Stimuli. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 22-38.	1.8	22
35	Influence of Interleukin-6 on Neural Activity and Transcription of the Gene Encoding Corticotrophin-releasing Factor in the Rat Brain: An Effect Depending Upon the Route of Administration. European Journal of Neuroscience, 1997, 9, 1461-1472.	2.6	51
36	Regulation of the Genes Encoding Interleukinâ€6, Its Receptor, and gp130 in the Rat Brain in Response to the Immune Activator Lipopolysaccharide and the Proinflammatory Cytokine Interleukinâ€1β. Journal of Neurochemistry, 1997, 69, 1668-1683.	3.9	276

#	Article	IF	CITATIONS
37	C-fos mRNA pattern and corticotropin-releasing factor neuronal activity throughout the brain of rats injected centrally with a prostaglandin of E2 type. Journal of Neuroimmunology, 1996, 70, 163-179.	2.3	87
38	The Rat Growth Hormone Proximal Silencer Contains a Novel DNA-Binding Site for Multiple Nuclear Proteins that Represses Basal Promoter Activity. FEBS Journal, 1994, 225, 419-432.	0.2	13