
Burçak Ebin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2747735/publications.pdf Version: 2024-02-01

RIIDÃSAK FRIN

#	Article	IF	CITATIONS
1	Recovery of critical metals from EV batteries via thermal treatment and leaching with sulphuric acid at ambient temperature. Waste Management, 2022, 140, 164-172.	7.4	8
2	Mixed Oxides NiO/ZnO/Al2O3 Synthesized in a Single Step via Ultrasonic Spray Pyrolysis (USP) Method. Metals, 2022, 12, 73.	2.3	8
3	Production of AB5 materials from spent Ni-MH batteries with further tests of hydrogen storage suitability. Journal of Power Sources, 2022, 539, 231459.	7.8	9
4	Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector. Resources, Conservation and Recycling, 2021, 164, 105142.	10.8	50
5	Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid. Waste Management, 2021, 125, 192-203.	7.4	64
6	Waste of batteries management: Synthesis of magnetocaloric manganite compound from the REEs mixture generated during hydrometallurgical processing of NiMH batteries. Sustainable Materials and Technologies, 2021, 28, e00267.	3.3	0
7	Innovative recycling of organic binders from electric vehicle lithium-ion batteries by supercritical carbon dioxide extraction. Resources, Conservation and Recycling, 2021, 172, 105666.	10.8	37
8	One Step Production of Silver-Copper (AgCu) Nanoparticles. Metals, 2021, 11, 1466.	2.3	11
9	Investigation of indium and other valuable metals leaching from unground waste LCD screens by organic and inorganic acid leaching. Separation and Purification Technology, 2021, 279, 119659.	7.9	21
10	Novel process for decontamination and additional valorization of steel making dust processing using two-step correlative leaching. Journal of Hazardous Materials, 2020, 384, 121442.	12.4	6
11	Novel Strategy for One-Step Production of Attenuated Ag-Containing AgCu/ZnO Antibacterial-Antifungal Nanocomposite Particles. Powder Metallurgy and Metal Ceramics, 2020, 59, 261-270.	0.8	2
12	Major challenges and opportunities in silicon solar module recycling. Progress in Photovoltaics: Research and Applications, 2020, 28, 1077-1088.	8.1	82
13	Incineration of EV Lithium-ion batteries as a pretreatment for recycling – Determination of the potential formation of hazardous by-products and effects on metal compounds. Journal of Hazardous Materials, 2020, 393, 122372.	12.4	70
14	Production of Energy Saving Materials from the Waste Mixtures of REEs. Minerals, Metals and Materials Series, 2020, , 67-76.	0.4	0
15	Chemical Transformations in Li-Ion Battery Electrode Materials by Carbothermic Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 13668-13679.	6.7	93
16	Considerations when Modelling EV Battery Circularity Systems. Batteries, 2019, 5, 40.	4.5	25
17	Selective recovery of cobalt from the secondary streams after NiMH batteries processing using Cyanex 301. Waste Management, 2019, 83, 194-201.	7.4	15
18	Recovery of industrial valuable metals from household battery waste. Waste Management and Research, 2019, 37, 168-175.	3.9	21

Burçak Ebin

#	Article	IF	CITATIONS
19	Investigation of the effects of thermal treatment on the leachability of Zn and Mn from discarded alkaline and Zn C batteries. Journal of Cleaner Production, 2018, 170, 1195-1205.	9.3	23
20	Simple Preparation of Ni and NiO Nanoparticles Using Raffinate Solution Originated from Spent NiMH Battery Recycling. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2554-2563.	3.7	26
21	Physical separation, mechanical enrichment and recycling-oriented characterization of spent NiMH batteries. Journal of Material Cycles and Waste Management, 2018, 20, 2018-2027.	3.0	38
22	HF-Free Synthesis of α-Zirconium Phosphate and Its Use as Ion Exchanger for Separation of Nd(III) and Dy(III) from a Ternary Co–Nd–Dy System. Journal of Sustainable Metallurgy, 2017, 3, 646-658.	2.3	10
23	Effects of the particle properties on electrochemical performance of nanocrystalline LiAl0.1Cu0.1Mn1.8O4 cathode materials prepared by ultrasonic spray pyrolysis. Journal of Electroanalytical Chemistry, 2017, 792, 1-7.	3.8	4
24	Investigation of zinc recovery by hydrogen reduction assisted pyrolysis of alkaline and zinc-carbon battery waste. Waste Management, 2017, 68, 508-517.	7.4	21
25	Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles. Journal of Magnetism and Magnetic Materials, 2017, 423, 133-139.	2.3	16
26	Pyrometallurgical Processes for the Recovery of Metals from WEEE. , 2016, , 107-137.		22
27	Disassembly of old radium sources and conversion of radium sulfate into radium carbonate for subsequent dissolution in acid. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 589-595.	1.5	15
28	Effects of gas flow rate on zinc recovery rate and particle properties by pyrolysis of alkaline and zinc-carbon battery waste. Journal of Analytical and Applied Pyrolysis, 2016, 121, 333-341.	5.5	14
29	Single-Step Production of Nanostructured Copper-Nickel (CuNi) and Copper-Nickel-Indium (CuNiIn) Alloy Particles. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3744-3752.	2.2	10
30	Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn–C battery waste. Waste Management, 2016, 51, 157-167.	7.4	48
31	Preparation and electrochemical properties of nanocrystalline LiBxMn2â^'xO4 cathode particles for Li-ion batteries by ultrasonic spray pyrolysis method. Journal of Alloys and Compounds, 2015, 620, 399-406.	5.5	28
32	Preparation and electrochemical properties of spinel LiFexCuyMn1.2O4 by ultrasonic spray pyrolysis. Ceramics International, 2014, 40, 1019-1027.	4.8	17
33	Photocatalytic studies of Ag/ZnO nanocomposite particles produced via ultrasonic spray pyrolysis method. Journal of Alloys and Compounds, 2014, 586, 267-273.	5.5	38
34	Comparison of 4V and 3V electrochemical properties of nanocrystalline LiMn2O4 cathode particles in lithium ion batteries prepared by ultrasonic spray pyrolysis. Ceramics International, 2014, 40, 7029-7035.	4.8	16
35	Reduction and characterizations of iron particles: influence of reduction parameters. Journal of Materials Science: Materials in Electronics, 2013, 24, 2602-2609.	2.2	2
36	Production of nanocrystalline silver particles by hydrogen reduction of silver nitrate aerosol droplets. Transactions of Nonferrous Metals Society of China, 2013, 23, 841-848.	4.2	8

Burçak Ebin

#	Article	IF	CITATIONS
37	Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP). International Journal of Materials Research, 2013, 104, 199-206.	0.3	14
38	Direct production of nanostructured copper-nickel (Cu-Ni) alloy particles. AIP Conference Proceedings, 2013, , .	0.4	3
39	Production and characterization of submicron hematite (αâ^'Fe[sub 2]O[sub 3]) particles by ultrasonic spray pyrolysis method. , 2013, , .		2
40	Preparation and magnetic characterization of Fe/metal oxide nanocomposite particles by means of hydrogen reduction assisted ultrasonic spray pyrolysis (USP-HR). International Journal of Materials Research, 2013, 104, 483-488.	0.3	5
41	Electrochemical properties of nanocrystalline LiCuxMn2â^xO4 (xÂ=Â0.2–0.6) particles prepared by ultrasonic spray pyrolysis method. Materials Chemistry and Physics, 2012, 136, 424-430.	4.0	14
42	Production and characterization of ZnO nanoparticles and porous particles by ultrasonic spray pyrolysis using a zinc nitrate precursor. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 651-656.	4.9	31
43	Electrochemical properties of nanocrystalline LiFexMn2â^xO4 (x=0.2–1.0) cathode particles prepared by ultrasonic spray pyrolysis method. Electrochimica Acta, 2012, 76, 368-374.	5.2	19
44	Synthesis and Characterization of Nickel Particles by Hydrogen Reduction Assisted Ultrasonic Spray Pyrolysis(USP-HR) Method. KONA Powder and Particle Journal, 2011, 29, 134-140.	1.7	22
45	Production and characterization of the nanostructured hollow iron oxide spheres and nanoparticles by aerosol route. Journal of Alloys and Compounds, 2010, 492, 585-589.	5.5	42
46	Nanocrystalline spherical iron–nickel (Fe–Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR). Journal of Alloys and Compounds, 2009, 480, 529-533.	5.5	60
47	Synthesis of nano-crystalline spherical cobalt–iron (Co–Fe) alloy particles by ultrasonic spray pyrolysis and hydrogen reduction. Journal of Alloys and Compounds, 2009, 481, 600-604.	5.5	37