List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2747657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Curation and expansion of Human Phenotype Ontology for defined groups of inborn errors of immunity. Journal of Allergy and Clinical Immunology, 2022, 149, 369-378.	1.5	16
2	Betacoronavirus-specific alternate splicing. Genomics, 2022, 114, 110270.	1.3	12
3	The RD onnect Genomeâ€Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases. Human Mutation, 2022, , .	1.1	18
4	Demonstrating an approach for evaluating synthetic geospatial and temporal epidemiologic data utility: results from analyzing >1.8 million SARS-CoV-2 tests in the United States National COVID Cohort Collaborative (N3C). Journal of the American Medical Informatics Association: JAMIA, 2022, 29, 1350-1365.	2.2	8
5	Association of Early Aspirin Use With In-Hospital Mortality in Patients With Moderate COVID-19. JAMA Network Open, 2022, 5, e223890.	2.8	31
6	Phenotypeâ€driven approaches to enhance variant prioritization and diagnosis of rare disease. Human Mutation, 2022, 43, 1071-1081.	1.1	17
7	PhenoRerank: A re-ranking model for phenotypic concept recognition pre-trained on human phenotype ontology. Journal of Biomedical Informatics, 2022, 129, 104059.	2.5	2
8	The Clinical Variant Analysis Tool: Analyzing the evidence supporting reported genomic variation in clinical practice. Genetics in Medicine, 2022, 24, 1512-1522.	1.1	4
9	Evaluation of phenotype-driven gene prioritization methods for Mendelian diseases. Briefings in Bioinformatics, 2022, 23, .	3.2	6
10	FABIAN-variant: predicting the effects of DNA variants on transcription factor binding. Nucleic Acids Research, 2022, 50, W322-W329.	6.5	12
11	PDXNet portal: patient-derived Xenograft model, data, workflow and tool discovery. NAR Cancer, 2022, 4, zcac014.	1.6	7
12	SvAnna: efficient and accurate pathogenicity prediction of coding and regulatory structural variants in long-read genome sequencing. Genome Medicine, 2022, 14, 44.	3.6	7
13	Deep phenotyping: symptom annotation made simple with SAMS. Nucleic Acids Research, 2022, 50, W677-W681.	6.5	5
14	Risk of newâ€onset psychiatric sequelae of <scp>COVID</scp> â€19 in the early and late postâ€acute phase. World Psychiatry, 2022, 21, 319-320.	4.8	15
15	NSAID use and clinical outcomes in COVID-19 patients: a 38-center retrospective cohort study. Virology Journal, 2022, 19, 84.	1.4	19
16	The GA4GH Phenopacket schema defines a computable representation of clinical data. Nature Biotechnology, 2022, 40, 817-820.	9.4	38
17	The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 427-443.	2.2	342
18	KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response. Patterns, 2021, 2, 100155.	3.1	62

#	Article	IF	CITATIONS
19	The Human Phenotype Ontology in 2021. Nucleic Acids Research, 2021, 49, D1207-D1217.	6.5	652
20	PhenoTagger: a hybrid method for phenotype concept recognition using human phenotype ontology. Bioinformatics, 2021, 37, 1884-1890.	1.8	18
21	Solving unsolved rare neurological diseases—a Solve-RD viewpoint. European Journal of Human Genetics, 2021, 29, 1332-1336.	1.4	4
22	Modeling seizures in the Human Phenotype Ontology according to contemporary ILAE concepts makes big phenotypic data tractable. Epilepsia, 2021, 62, 1293-1305.	2.6	15
23	E2F6 initiates stable epigenetic silencing of germline genes during embryonic development. Nature Communications, 2021, 12, 3582.	5.8	21
24	Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases. European Journal of Human Genetics, 2021, 29, 1325-1331.	1.4	49
25	Solving patients with rare diseases through programmatic reanalysis of genome-phenome data. European Journal of Human Genetics, 2021, 29, 1337-1347.	1.4	34
26	HEMDAG: a family of modular and scalable hierarchical ensemble methods to improve Gene Ontology term prediction. Bioinformatics, 2021, 37, 4526-4533.	1.8	2
27	Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment. Nature Communications, 2021, 12, 5086.	5.8	58
28	Interpretable prioritization of splice variants in diagnostic next-generation sequencing. American Journal of Human Genetics, 2021, 108, 1564-1577.	2.6	36
29	Response to Biesecker etÂal American Journal of Human Genetics, 2021, 108, 1807-1808.	2.6	3
30	A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
31	100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care — Preliminary Report. New England Journal of Medicine, 2021, 385, 1868-1880.	13.9	352
32	GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell Genomics, 2021, 1, 100029.	3.0	94
33	The GA4GH Variation Representation Specification: A computational framework for variation representation and federated identification. Cell Genomics, 2021, 1, 100027.	3.0	18
34	Abdominal Computed Tomography Imaging Findings in Hospitalized COVID-19 Patients: A Year-Long Experience and Associations Revealed by Explainable Artificial Intelligence. Journal of Imaging, 2021, 7, 258.	1.7	2
35	Characterizing Long COVID: Deep Phenotype of a Complex Condition. EBioMedicine, 2021, 74, 103722.	2.7	127
36	Supervised learning with word embeddings derived from PubMed captures latent knowledge about protein kinases and cancer. NAR Genomics and Bioinformatics, 2021, 3, lqab113.	1.5	4

#	Article	IF	CITATIONS
37	The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Research, 2020, 48, D704-D715.	6.5	178
38	The case for open science: rare diseases. JAMIA Open, 2020, 3, 472-486.	1.0	33
39	HBA-DEALS: accurate and simultaneous identification of differential expression and splicing using hierarchical Bayesian analysis. Genome Biology, 2020, 21, 171.	3.8	7
40	parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants. GigaScience, 2020, 9, .	3.3	11
41	A guide to writing systematic reviews of rare disease treatments to generate FAIR-compliant datasets: building a Treatabolome. Orphanet Journal of Rare Diseases, 2020, 15, 206.	1.2	21
42	Modelling kidney disease using ontology: insights from the Kidney Precision Medicine Project. Nature Reviews Nephrology, 2020, 16, 686-696.	4.1	45
43	Ontologies, Knowledge Representation, and Machine Learning for Translational Research: Recent Contributions. Yearbook of Medical Informatics, 2020, 29, 159-162.	0.8	14
44	Explainable Machine Learning for Early Assessment of COVID-19 Risk Prediction in Emergency Departments. IEEE Access, 2020, 8, 196299-196325.	2.6	55
45	Interpretable Clinical Genomics with a Likelihood Ratio Paradigm. American Journal of Human Genetics, 2020, 107, 403-417.	2.6	56
46	Phenotate: crowdsourcing phenotype annotations as exercises in undergraduate classes. Genetics in Medicine, 2020, 22, 1391-1400.	1.1	2
47	Significantly different clinical phenotypes associated with mutations in synthesis and transamidase+remodeling glycosylphosphatidylinositol (GPI)-anchor biosynthesis genes. Orphanet Journal of Rare Diseases, 2020, 15, 40.	1.2	21
48	Pervasive and CpG-dependent promoter-like characteristics of transcribed enhancers. Nucleic Acids Research, 2020, 48, 5306-5317.	6.5	24
49	An Improved Phenotype-Driven Tool for Rare Mendelian Variant Prioritization: Benchmarking Exomiser on Real Patient Whole-Exome Data. Genes, 2020, 11, 460.	1.0	42
50	Supplementation of the ESID registry working definitions for the clinical diagnosis of inborn errors of immunity with encoded human phenotype ontology (HPO) terms. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 1778.	2.0	8
51	How many rare diseases are there?. Nature Reviews Drug Discovery, 2020, 19, 77-78.	21.5	204
52	Encoding Clinical Data with the Human Phenotype Ontology for Computational Differential Diagnostics. Current Protocols in Human Genetics, 2019, 103, e92.	3.5	29
53	Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data. Genes, 2019, 10, 548.	1.0	5
54	An integrative systems approach identifies novel candidates in Marfan syndromeâ€related pathophysiology. Journal of Cellular and Molecular Medicine, 2019, 23, 2526-2535.	1.6	17

#	Article	IF	CITATIONS
55	An ontological foundation for ocular phenotypes and rare eye diseases. Orphanet Journal of Rare Diseases, 2019, 14, 8.	1.2	18
56	PEDIA: prioritization of exome data by image analysis. Genetics in Medicine, 2019, 21, 2807-2814.	1.1	58
57	Semantic integration of clinical laboratory tests from electronic health records for deep phenotyping and biomarker discovery. Npj Digital Medicine, 2019, 2, .	5.7	39
58	Ensembling Descendant Term Classifiers to Improve Gene - Abnormal Phenotype Predictions. Lecture Notes in Computer Science, 2019, , 70-80.	1.0	2
59	Estimating heritability and genetic correlations from large health datasets in the absence of genetic data. Nature Communications, 2019, 10, 5508.	5.8	17
60	Representing glycophenotypes: semantic unification of glycobiology resources for disease discovery. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	5
61	Assessment of Bones Deficient in Fibrillin-1 Microfibrils Reveals Pronounced Sex Differences. International Journal of Molecular Sciences, 2019, 20, 6059.	1.8	8
62	Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Research, 2019, 47, D1018-D1027.	6.5	539
63	GOPHER: Generator Of Probes for capture Hi-C Experiments at high Resolution. BMC Genomics, 2019, 20, 40.	1.2	10
64	An Integrated Understanding of the Molecular Mechanisms of How Adipose Tissue Metabolism Affects Long-term Body Weight Maintenance. Diabetes, 2019, 68, 57-65.	0.3	23
65	Plain-language medical vocabulary for precision diagnosis. Nature Genetics, 2018, 50, 474-476.	9.4	28
66	Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses. Bone, 2018, 113, 29-40.	1.4	13
67	Harmonising phenomics information for a better interoperability in the rare disease field. European Journal of Medical Genetics, 2018, 61, 706-714.	0.7	29
68	Evaluation of exome filtering techniques for the analysis of clinically relevant genes. Human Mutation, 2018, 39, 197-201.	1.1	13
69	Improving service delivery for neuromuscular diseases: a survey of consumers at a tertiary Australian hospital. Internal Medicine Journal, 2018, 48, 1520-1524.	0.5	0
70	Classification, Ontology, and Precision Medicine. New England Journal of Medicine, 2018, 379, 1452-1462.	13.9	220
71	A Census of Disease Ontologies. Annual Review of Biomedical Data Science, 2018, 1, 305-331.	2.8	29
72	Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis. Genome Medicine, 2018, 10, 3.	3.6	67

#	Article	IF	CITATIONS
73	The Human Phenotype Ontology in 2017. Nucleic Acids Research, 2017, 45, D865-D876.	6.5	699
74	Once doesn't count: Phenotype-driven gene hunting in cohorts. Human Mutation, 2017, 38, 469-469.	1.1	0
75	International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases. American Journal of Human Genetics, 2017, 100, 695-705.	2.6	305
76	Nomenclature and definition in asymmetric regional body overgrowth. American Journal of Medical Genetics, Part A, 2017, 173, 1735-1738.	0.7	36
77	Imbalance-Aware Machine Learning for Predicting Rare and Common Disease-Associated Non-Coding Variants. Scientific Reports, 2017, 7, 2959.	1.6	63
78	Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell, 2017, 169, 6-12.	13.5	103
79	Interpreting Phenotypic Features of Bicuspid Aortic Valve Disease: From Simplification to Complexity to Simplicity?. American Journal of Medicine, 2017, 130, e315-e316.	0.6	3
80	The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Research, 2017, 45, D712-D722.	6.5	306
81	Cover Image, Volume 173A, Number 7, July 2017. American Journal of Medical Genetics, Part A, 2017, 173, i.	0.7	0
82	Improved Diagnosis and Care for Rare Diseases through Implementation of Precision Public Health Framework. Advances in Experimental Medicine and Biology, 2017, 1031, 55-94.	0.8	20
83	AP-1 Oligodeoxynucleotides Reduce Aortic Elastolysis in a Murine Model of Marfan Syndrome. Molecular Therapy - Nucleic Acids, 2017, 9, 69-79.	2.3	15
84	A likelihood ratio-based method to predict exact pedigrees for complex families from next-generation sequencing data. Bioinformatics, 2017, 33, 72-78.	1.8	8
85	Defining Disease, Diagnosis, and Translational Medicine within a Homeostatic Perturbation Paradigm: The National Institutes of Health Undiagnosed Diseases Program Experience. Frontiers in Medicine, 2017, 4, 62.	1.2	23
86	Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer. BioMed Research International, 2017, 2017, 1-13.	0.9	28
87	Biometric and structural ocular manifestations of Marfan syndrome. PLoS ONE, 2017, 12, e0183370.	1.1	54
88	Genome-Wide Binding of Posterior HOXA/D Transcription Factors Reveals Subgrouping and Association with CTCF. PLoS Genetics, 2017, 13, e1006567.	1.5	38
89	Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods. BMC Bioinformatics, 2017, 18, 449.	1.2	22
90	Identification of a molecular defect in a stillborn fetus with perinatal lethal hypophosphatasia using a disease-associated genome sequencing approach. Polish Journal of Pathology, 2016, 1, 78-83.	0.1	3

#	Article	IF	CITATIONS
91	Rare Noncoding Mutations Extend the Mutational Spectrum in the <i>PGAP3</i> Subtype of Hyperphosphatasia with Mental Retardation Syndrome. Human Mutation, 2016, 37, 737-744.	1.1	46
92	Alternate-locus aware variant calling in whole genome sequencing. Genome Medicine, 2016, 8, 130.	3.6	16
93	A systematic, large-scale comparison of transcription factor binding site models. BMC Genomics, 2016, 17, 388.	1.2	15
94	An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biology, 2016, 17, 184.	3.8	308
95	The digital revolution in phenotyping. Briefings in Bioinformatics, 2016, 17, 819-830.	3.2	41
96	A Whole-Genome Analysis Framework for Effective Identification of Pathogenic Regulatory Variants in Mendelian Disease. American Journal of Human Genetics, 2016, 99, 595-606.	2.6	223
97	Navigating the Phenotype Frontier: The Monarch Initiative. Genetics, 2016, 203, 1491-1495.	1.2	65
98	Q-nexus: a comprehensive and efficient analysis pipeline designed for ChIP-nexus. BMC Genomics, 2016, 17, 873.	1.2	12
99	Animal-based studies will be essential for precision medicine. Science Translational Medicine, 2016, 8, 352ed12.	5.8	19
100	Tools for exploring mouse models of human disease. Drug Discovery Today: Disease Models, 2016, 20, 21-26.	1.2	0
101	NT-proBNP and diastolic left ventricular function in patients with Marfan syndrome. IJC Heart and Vasculature, 2016, 12, 15-20.	0.6	7
102	Clinical utility gene card for: Hereditary thoracic aortic aneurysm and dissection including next-generation sequencing-based approaches. European Journal of Human Genetics, 2016, 24, 146-150.	1.4	28
103	Marfanoid–progeroid–lipodystrophy syndrome: a newly recognized fibrillinopathy. European Journal of Human Genetics, 2016, 24, 1244-1247.	1.4	29
104	Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency. Genetics in Medicine, 2016, 18, 608-617.	1.1	85
105	PhenomeCentral: A Portal for Phenotypic and Genotypic Matchmaking of Patients with Rare Genetic Diseases. Human Mutation, 2015, 36, 931-940.	1.1	107
106	The Genomic Birthday Paradox: How Much Is Enough?. Human Mutation, 2015, 36, 989-997.	1.1	13
107	Use of Model Organism and Disease Databases to Support Matchmaking for Human Disease Gene Discovery. Human Mutation, 2015, 36, 979-984.	1.1	36
108	Crowdsourced direct-to-consumer genomic analysis of a family quartet. BMC Genomics, 2015, 16, 910.	1.2	20

#	Article	IF	CITATIONS
109	Phenotype-driven strategies for exome prioritization of human Mendelian disease genes. Genome Medicine, 2015, 7, 81.	3.6	97
110	PhenoMiner: from text to a database of phenotypes associated with OMIM diseases. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav104.	1.4	29
111	Automatic concept recognition using the Human Phenotype Ontology reference and test suite corpora. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav005-bav005.	1.4	55
112	Analysis of Strengths, Weaknesses, Opportunities, and Threats as a Tool for Translating Evidence into Individualized Medical Strategies (I-SWOT). Aorta, 2015, 03, 98-107.	0.1	24
113	Perspectives on the revised Ghent criteria for the diagnosis of Marfan syndrome. The Application of Clinical Genetics, 2015, 8, 137.	1.4	120
114	IMSEQ—a fast and error aware approach to immunogenetic sequence analysis. Bioinformatics, 2015, 31, 2963-2971.	1.8	98
115	Towards a European consensus for reporting incidental findings during clinical NGS testing. European Journal of Human Genetics, 2015, 23, 1601-1606.	1.4	85
116	Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Medicine, 2015, 7, 36.	3.6	119
117	Capturing phenotypes for precision medicine. Journal of Physical Education and Sports Management, 2015, 1, a000372.	0.5	32
118	Next-generation diagnostics and disease-gene discovery with the Exomiser. Nature Protocols, 2015, 10, 2004-2015.	5.5	296
119	Missense variant in CCDC22 causes X-linked recessive intellectual disability with features of Ritscher-Schinzel/3C syndrome. European Journal of Human Genetics, 2015, 23, 633-638.	1.4	42
120	Finding Our Way through Phenotypes. PLoS Biology, 2015, 13, e1002033.	2.6	178
121	The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease. American Journal of Human Genetics, 2015, 97, 111-124.	2.6	203
122	FGFR2 mutation in a patient without typical features of Pfeiffer syndrome – The emerging role of combined NGS and phenotype based strategies. European Journal of Medical Genetics, 2015, 58, 376-380.	0.7	9
123	Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nature Methods, 2015, 12, 841-843.	9.0	327
124	Saturation analysis of ChIP-seq data for reproducible identification of binding peaks. Genome Research, 2015, 25, 1391-1400.	2.4	24
125	Somatic neurofibromatosis type 1 (NF1) inactivation events in cutaneous neurofibromas of a single NF1 patient. European Journal of Human Genetics, 2015, 23, 870-873.	1.4	20
126	Capturing domain knowledge from multiple sources: the rare bone disorders use case. Journal of Biomedical Semantics, 2015, 6, 21.	0.9	2

#	Article	IF	CITATIONS
127	Prediction of Human Gene - Phenotype Associations by Exploiting the Hierarchical Structure of the Human Phenotype Ontology. Lecture Notes in Computer Science, 2015, , 66-77.	1.0	3
128	Disease insights through cross-species phenotype comparisons. Mammalian Genome, 2015, 26, 548-555.	1.0	19
129	Phenotyping: Targeting genotype's rich cousin for diagnosis. Journal of Paediatrics and Child Health, 2015, 51, 381-386.	0.4	29
130	The Matchmaker Exchange: A Platform for Rare Disease Gene Discovery. Human Mutation, 2015, 36, 915-921.	1.1	390
131	Strategies to improve the performance of rare variant association studies by optimizing the selection of controls. Bioinformatics, 2015, 31, btv457.	1.8	Ο
132	Human genotype–phenotype databases: aims, challenges and opportunities. Nature Reviews Genetics, 2015, 16, 702-715.	7.7	100
133	MiR-497â^1⁄4195 Cluster MicroRNAs Regulate Osteoblast Differentiation by Targeting BMP Signaling. Journal of Bone and Mineral Research, 2015, 30, 796-808.	3.1	65
134	A Hierarchical Ensemble Method for DAG-Structured Taxonomies. Lecture Notes in Computer Science, 2015, , 15-26.	1.0	8
135	Differential effect of cataract-associated mutations in MAF on transactivation of MAF target genes. Molecular and Cellular Biochemistry, 2014, 396, 137-145.	1.4	11
136	The main pulmonary artery in adults: a controlled multicenter study with assessment of echocardiographic reference values, and the frequency of dilatation and aneurysm in Marfan syndrome. Orphanet Journal of Rare Diseases, 2014, 9, 203.	1.2	34
137	Clinical interpretation of CNVs with cross-species phenotype data. Journal of Medical Genetics, 2014, 51, 766-772.	1.5	23
138	Walking the interactome for candidate prioritization in exome sequencing studies of Mendelian diseases. Bioinformatics, 2014, 30, 3215-3222.	1.8	91
139	Phenotype Ontologies and Cross-Species Analysis for Translational Research. PLoS Genetics, 2014, 10, e1004268.	1.5	63
140	Genomic data sharing for translational research and diagnostics. Genome Medicine, 2014, 6, 78.	3.6	8
141	Total Serum Transforming Growth Factorâ€Î²1 Is Elevated in the Entire Spectrum of Genetic Aortic Syndromes. Clinical Cardiology, 2014, 37, 672-679.	0.7	36
142	Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Research, 2014, 24, 340-348.	2.4	300
143	Screening for single nucleotide variants, small indels and exon deletions with a nextâ€generation sequencing based gene panel approach for <scp>U</scp> sher syndrome. Molecular Genetics & Genomic Medicine, 2014, 2, 393-401.	0.6	22
144	Delineation of PIGV mutation spectrum and associated phenotypes in hyperphosphatasia with mental retardation syndrome. European Journal of Human Genetics, 2014, 22, 762-767.	1.4	39

#	Article	IF	CITATIONS
145	Use of animal models for exome prioritization of rare disease genes. Orphanet Journal of Rare Diseases, 2014, 9, 019.	1.2	0
146	Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biology, 2014, 15, 423.	3.8	144
147	Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Science Translational Medicine, 2014, 6, 252ra123.	5.8	223
148	Neonatal progeroid variant of Marfan syndrome with congenital lipodystrophy results from mutations at the 3′ end of FBN1 gene. European Journal of Medical Genetics, 2014, 57, 230-234.	0.7	41
149	The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Research, 2014, 42, D966-D974.	6.5	698
150	Jannovar: A Java Library for Exome Annotation. Human Mutation, 2014, 35, 548-555.	1.1	63
151	RD-Connect: An Integrated Platform Connecting Databases, Registries, Biobanks and Clinical Bioinformatics for Rare Disease Research. Journal of General Internal Medicine, 2014, 29, 780-787.	1.3	159
152	Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology. BMC Bioinformatics, 2014, 15, 248.	1.2	48
153	The influence of disease categories on gene candidate predictions from model organism phenotypes. Journal of Biomedical Semantics, 2014, 5, S4.	0.9	9
154	Comprehensive analysis of dural ectasia in 150 patients with a causative <i><scp>FBN1</scp></i> mutation. Clinical Genetics, 2014, 86, 238-245.	1.0	24
155	Mutations in PGAP3 Impair GPI-Anchor Maturation, Causing a Subtype of Hyperphosphatasia with Mental Retardation. American Journal of Human Genetics, 2014, 94, 278-287.	2.6	88
156	First description of a patient with Vici syndrome due to a mutation affecting the penultimate exon of <i>EPG5</i> and review of the literature. American Journal of Medical Genetics, Part A, 2014, 164, 3170-3175.	0.7	33
157	When Should Surgery Be Performed in Marfan Syndrome and Other Connective Tissue Disorders to Protect Against Type A Dissection?. , 2014, , 17-47.		10
158	Computational Phenotype Analysis in Human Medicine. , 2014, , 8-23.		3
159	Estimating exome genotyping accuracy by comparing to data from large scale sequencing projects. Genome Medicine, 2013, 5, 69.	3.6	23
160	TCR Repertoire Analysis by Next Generation Sequencing Allows Complex Differential Diagnosis of T Cell–Related Pathology. American Journal of Transplantation, 2013, 13, 2842-2854.	2.6	131
161	A case of paroxysmal nocturnal hemoglobinuria caused by a germline mutation and a somatic mutation in PIGT. Blood, 2013, 122, 1312-1315.	0.6	77
162	FBN1 gene mutation characteristics and clinical features for the prediction of mitral valve disease progression. International Journal of Cardiology, 2013, 168, 953-959.	0.8	15

#	Article	IF	CITATIONS
163	miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. International Journal of Biochemistry and Cell Biology, 2013, 45, 696-705.	1.2	120
164	PGAP2 Mutations, Affecting the GPI-Anchor-Synthesis Pathway, Cause Hyperphosphatasia with Mental Retardation Syndrome. American Journal of Human Genetics, 2013, 92, 584-589.	2.6	98
165	Regulation of fibrillin-1 gene expression by Sp1. Gene, 2013, 527, 448-455.	1.0	7
166	Ascending aortic aneurysm and aortic valve dysfunction in bicuspid aortic valve disease. International Journal of Cardiology, 2013, 164, 301-305.	0.8	24
167	The fibrillin-1 hypomorphic mgR/mgR murine model of Marfan syndrome shows severe elastolysis in all segments of the aorta. Journal of Vascular Surgery, 2013, 57, 1628-1636.e3.	0.6	36
168	Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. Journal of Experimental Medicine, 2013, 210, 433-443.	4.2	186
169	Doubly heterozygous LMNA and TTN mutations revealed by exome sequencing in a severe form of dilated cardiomyopathy. European Journal of Human Genetics, 2013, 21, 1105-1111.	1.4	86
170	Antagonism of GxxPG fragments ameliorates manifestations of aortic disease in Marfan syndrome mice. Human Molecular Genetics, 2013, 22, 433-443.	1.4	33
171	PhenoDigm: analyzing curated annotations to associate animal models with human diseases. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat025-bat025.	1.4	115
172	Distinct global shifts in genomic binding profiles of limb malformation-associated <i>HOXD13</i> mutations. Genome Research, 2013, 23, 2091-2102.	2.4	31
173	Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish. DMM Disease Models and Mechanisms, 2013, 6, 358-72.	1.2	43
174	Indomethacin Prevents the Progression of Thoracic Aortic Aneurysm in Marfan Syndrome Mice. Aorta, 2013, 1, 5-12.	0.1	14
175	Filtering for Compound Heterozygous Sequence Variants in Non-Consanguineous Pedigrees. PLoS ONE, 2013, 8, e70151.	1.1	41
176	Observational Cohort Study of Ventricular Arrhythmia in Adults with Marfan Syndrome Caused by FBN1 Mutations. PLoS ONE, 2013, 8, e81281.	1.1	45
177	Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research. F1000Research, 2013, 2, 30.	0.8	72
178	Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research. F1000Research, 2013, 2, 30.	0.8	64
179	Integrating the human phenotype ontology into HeTOP terminology-ontology server. Studies in Health Technology and Informatics, 2013, 192, 961.	0.2	1
180	Bayesian ontology querying for accurate and noise-tolerant semantic searches. Bioinformatics, 2012, 28, 2502-2508.	1.8	55

#	Article	IF	CITATIONS
181	The allele distribution in next-generation sequencing data sets is accurately described as the result of a stochastic branching process. Nucleic Acids Research, 2012, 40, 2426-2431.	6.5	40
182	Mechanism for Release of Alkaline Phosphatase Caused by Glycosylphosphatidylinositol Deficiency in Patients with Hyperphosphatasia Mental Retardation Syndrome. Journal of Biological Chemistry, 2012, 287, 6318-6325.	1.6	82
183	Two Missense Mutations in the Primary Autosomal Recessive Microcephaly Gene MCPH1 Disrupt the Function of the Highly Conserved N-Terminal BRCT Domain of Microcephalin. Molecular Syndromology, 2012, 3, 6-13.	0.3	16
184	Analysis of phenotype and genotype information for the diagnosis of Marfan syndrome. Clinical Genetics, 2012, 82, 240-247.	1.0	40
185	A novel 7Åbp deletion in PRPF31 associated with autosomal dominant retinitis pigmentosa with incomplete penetrance in an Indian family. Experimental Eye Research, 2012, 104, 82-88.	1.2	20
186	Mutations in PIGO, a Member of the GPI-Anchor-Synthesis Pathway, Cause Hyperphosphatasia with Mental Retardation. American Journal of Human Genetics, 2012, 91, 146-151.	2.6	135
187	Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis. BMC Medical Informatics and Decision Making, 2012, 12, 78.	1.5	9
188	Homeotic Arm-to-Leg Transformation Associated with Genomic Rearrangements at the PITX1 Locus. American Journal of Human Genetics, 2012, 91, 629-635.	2.6	111
189	In-Frame Mutations in Exon 1 of SKI Cause Dominant Shprintzen-Goldberg Syndrome. American Journal of Human Genetics, 2012, 91, 950-957.	2.6	95
190	Summarizing Phenotype Evolution Patterns from Report Cases. Journal of Medical Systems, 2012, 36, 25-36.	2.2	1
191	Deep phenotyping for precision medicine. Human Mutation, 2012, 33, 777-780.	1.1	346
192	Ontological phenotype standards for neurogenetics. Human Mutation, 2012, 33, 1333-1339.	1.1	28
193	A simple clinical model to estimate the probability of Marfan syndrome. QJM - Monthly Journal of the Association of Physicians, 2012, 105, 527-535.	0.2	25
194	The new Ghent criteria for Marfan syndrome: what do they change?. Clinical Genetics, 2012, 81, 433-442.	1.0	90
195	MouseFinder: Candidate disease genes from mouse phenotype data. Human Mutation, 2012, 33, 858-866.	1.1	53
196	Phenotypic variability in hyperphosphatasia with seizures and neurologic deficit (Mabry syndrome). American Journal of Medical Genetics, Part A, 2012, 158A, 553-558.	0.7	40
197	Central pulse pressure and augmentation index in asymptomatic bicuspid aortic valve disease. International Journal of Cardiology, 2011, 147, 466-468.	0.8	11
198	MicroRNAs Differentially Expressed in Postnatal Aortic Development Downregulate Elastin via 3′ UTR and Coding-Sequence Binding Sites. PLoS ONE, 2011, 6, e16250.	1.1	100

#	Article	IF	CITATIONS
199	Minimum Information about a Genotyping Experiment (MIGEN). Standards in Genomic Sciences, 2011, 5, 224-229.	1.5	3
200	Dural ectasia in individuals with Marfan-like features but exclusion of mutations in the genes FBN1, TGFBR1 and TGFBR2. Clinical Genetics, 2011, 79, 568-574.	1.0	18
201	Strategies for exome and genome sequence data analysis in diseaseâ€gene discovery projects. Clinical Genetics, 2011, 80, 127-132.	1.0	81
202	Predictors of Outcome of Mitral Valve Prolapse in Patients With the Marfan Syndrome. American Journal of Cardiology, 2011, 107, 268-274.	0.7	38
203	Call for participation in the neurogenetics consortium within the Human Variome Project. Neurogenetics, 2011, 12, 169-173.	0.7	5
204	Das Marfan-Syndrom und verwandte monogene Krankheiten der Aorta. Medizinische Genetik, 2011, 23, 407-420.	0.1	1
205	Improving ontologies by automatic reasoning and evaluation of logical definitions. BMC Bioinformatics, 2011, 12, 418.	1.2	29
206	Exact score distribution computation for ontological similarity searches. BMC Bioinformatics, 2011, 12, 441.	1.2	15
207	Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing. BMC Genomics, 2011, 12, 158.	1.2	63
208	Progeroid facial features and lipodystrophy associated with a novel splice site mutation in the final intron of the FBN1 gene. , 2011, 155, 721-724.		39
209	Bioinformatics for Human Genetics: Promises and Challenges. Human Mutation, 2011, 32, 495-500.	1.1	21
210	Neurofibromin (Nf1) is required for skeletal muscle development. Human Molecular Genetics, 2011, 20, 2697-2709.	1.4	58
211	Integrative analysis of genomic, functional and protein interaction data predicts long-range enhancer-target gene interactions. Nucleic Acids Research, 2011, 39, 2492-2502.	6.5	22
212	Model-based gene set analysis for Bioconductor. Bioinformatics, 2011, 27, 1882-1883.	1.8	56
213	Misregulation of mitotic chromosome segregation in a new type of autosomal recessive primary microcephaly. Cell Cycle, 2011, 10, 2967-2977.	1.3	12
214	Identity-by-descent filtering of exome sequence data for disease–gene identification in autosomal recessive disorders. Bioinformatics, 2011, 27, 829-836.	1.8	30
215	Induction of Macrophage Chemotaxis by Aortic Extracts from Patients with Marfan Syndrome Is Related to Elastin Binding Protein. PLoS ONE, 2011, 6, e20138.	1.1	30
216	G6PC3 Deficiency Associated with Congenital Neutropenia and Enterocolitis. Blood, 2011, 118, 2170-2170.	0.6	2

#	Article	IF	CITATIONS
217	Frequency of Sleep Apnea in Adults With the Marfan Syndrome. American Journal of Cardiology, 2010, 105, 1836-1841.	0.7	50
218	Frequency and Age-Related Course of Mitral Valve Dysfunction in the Marfan Syndrome. American Journal of Cardiology, 2010, 106, 1048-1053.	0.7	76
219	Marfan syndrome with neonatal progeroid syndromeâ€like lipodystrophy associated with a novel frameshift mutation at the 3′ terminus of the <i>FBN1</i> â€gene. American Journal of Medical Genetics, Part A, 2010, 152A, 2749-2755.	0.7	68
220	Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nature Genetics, 2010, 42, 827-829.	9.4	286
221	The Human Phenotype Ontology. Clinical Genetics, 2010, 77, 525-534.	1.0	267
222	Temperature and Denaturing Gradient Gel Electrophoresis. , 2010, , 75-86.		0
223	Augmentation Index and the Evolution of Aortic Disease in Marfan-Like Syndromes. American Journal of Hypertension, 2010, 23, 716-724.	1.0	23
224	Quantitative analysis of <i>TGFBR2</i> mutations in Marfan-syndrome-related disorders suggests a correlation between phenotypic severity and Smad signaling activity. Journal of Cell Science, 2010, 123, 4340-4350.	1.2	58
225	GOing Bayesian: model-based gene set analysis of genome-scale data. Nucleic Acids Research, 2010, 38, 3523-3532.	6.5	190
226	Cardiovascular manifestations in men and women carrying a FBN1 mutation. European Heart Journal, 2010, 31, 2223-2229.	1.0	133
227	Microindel detection in short-read sequence data. Bioinformatics, 2010, 26, 722-729.	1.8	90
228	Whole-exome sequencing for finding de novo mutations in sporadic mental retardation. Genome Biology, 2010, 11, 144.	13.9	156
229	A Systematic Approach to Marfan Syndrome and Hereditary Forms of Aortic Dilatation and Dissection. , 2010, , 223-232.		0
230	CA8 Mutations Cause a Novel Syndrome Characterized by Ataxia and Mild Mental Retardation with Predisposition to Quadrupedal Gait. PLoS Genetics, 2009, 5, e1000487.	1.5	120
231	Entity/quality-based logical definitions for the human skeletal phenome using PATO. , 2009, 2009, 7069-72.		67
232	Clinical and Molecular Study of 320 Children With Marfan Syndrome and Related Type I Fibrillinopathies in a Series of 1009 Probands With Pathogenic <i>FBN1</i> Mutations. Pediatrics, 2009, 123, 391-398.	1.0	146
233	Augmentation Index Relates to Progression of Aortic Disease in Adults With Marfan Syndrome. American Journal of Hypertension, 2009, 22, 971-979.	1.0	46
234	Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24–32 mutation. European Journal of Human Genetics, 2009, 17, 491-501.	1.4	66

#	Article	IF	CITATIONS
235	Clinical Diagnostics in Human Genetics with Semantic Similarity Searches in Ontologies. American Journal of Human Genetics, 2009, 85, 457-464.	2.6	444
236	Promiscuous and Depolarization-Induced Immediate-Early Response Genes Are Induced by Mechanical Strain of Osteoblasts. Journal of Bone and Mineral Research, 2009, 24, 1247-1262.	3.1	26
237	Short ultraconserved promoter regions delineate a class of preferentially expressed alternatively spliced transcripts. Genomics, 2009, 94, 308-316.	1.3	11
238	Exact Score Distribution Computation for Similarity Searches in Ontologies. Lecture Notes in Computer Science, 2009, , 298-309.	1.0	3
239	The spectrum of syndromes and manifestations in individuals screened for suspected Marfan syndrome. American Journal of Medical Genetics, Part A, 2008, 146A, 3157-3166.	0.7	67
240	Walking the Interactome for Prioritization of Candidate Disease Genes. American Journal of Human Genetics, 2008, 82, 949-958.	2.6	1,111
241	The Human Phenotype Ontology: A Tool for Annotating and Analyzing Human Hereditary Disease. American Journal of Human Genetics, 2008, 83, 610-615.	2.6	797
242	A short ultraconserved sequence drives transcription from an alternate FBN1 promoter. International Journal of Biochemistry and Cell Biology, 2008, 40, 638-650.	1.2	15
243	Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics, 2008, 24, 1650-1651.	1.8	466
244	Contribution of molecular analyses in diagnosing Marfan syndrome and type I fibrillinopathies: an international study of 1009 probands. Journal of Medical Genetics, 2008, 45, 384-390.	1.5	83
245	Diagnosis and management of MarfanÂsyndrome. Future Cardiology, 2008, 4, 85-96.	0.5	29
246	The generalised k-Truncated Suffix Tree for time-and space-efficient searches in multiple DNA or protein sequences. International Journal of Bioinformatics Research and Applications, 2008, 4, 81.	0.1	19
247	Marfan syndrome: an update of genetics, medical and surgical management. Heart, 2007, 93, 755-760.	1.2	112
248	Improved detection of overrepresentation of Gene-Ontology annotations with parent–child analysis. Bioinformatics, 2007, 23, 3024-3031.	1.8	370
249	Effect of Mutation Type and Location on Clinical Outcome in 1,013 Probands with Marfan Syndrome or Related Phenotypes and FBN1 Mutations: An International Study. American Journal of Human Genetics, 2007, 81, 454-466.	2.6	485
250	Detection of novel skeletogenesis target genes by comprehensive analysis of a Runx2â^'/â^' mouse model. Gene Expression Patterns, 2007, 7, 102-112.	0.3	82
251	Tissue Doppler imaging identifies myocardial dysfunction in adults with marfan syndrome. Clinical Cardiology, 2007, 30, 19-24.	0.7	78
252	Binary State Pattern Clustering: A Digital Paradigm for Class and Biomarker Discovery in Gene Microarray Studies of Cancer. Journal of Computational Biology, 2006, 13, 1114-1130.	0.8	7

#	Article	IF	CITATIONS
253	Escobar Syndrome Is a Prenatal Myasthenia Caused by Disruption of the Acetylcholine Receptor Fetal Î ³ Subunit. American Journal of Human Genetics, 2006, 79, 303-312.	2.6	146
254	Calcium-dependent self-association of the C-type lectin domain of versican. International Journal of Biochemistry and Cell Biology, 2006, 38, 23-29.	1.2	39
255	A fibrillin-1-fragment containing theÂelastin-binding-protein GxxPG consensus sequence upregulates matrix metalloproteinase-1: biochemical andÂcomputational analysis. Journal of Molecular and Cellular Cardiology, 2006, 40, 234-246.	0.9	52
256	HotSwap for bioinformatics: a STRAP tutorial. BMC Bioinformatics, 2006, 7, 64.	1.2	7
257	Gene identification and analysis of transcripts differentially regulated in fracture healing by EST sequencing in the domestic sheep. BMC Genomics, 2006, 7, 172.	1.2	23
258	Response to Kosaki et al. "Molecular pathology of Shprintzen-Goldberg syndrome― American Journal of Medical Genetics, Part A, 2006, 140A, 109-110.	0.7	8
259	A novel mutation in the DNA-binding domain ofMAF at 16q23.1 associated with autosomal dominant "cerulean cataract―in an Indian family. American Journal of Medical Genetics, Part A, 2006, 140A, 558-566.	0.7	74
260	A novel 8 Mb interstitial deletion of chromosome 8p12-p21.2. American Journal of Medical Genetics, Part A, 2006, 140A, 873-877.	0.7	21
261	The molecular genetics of Marfan syndrome and related disorders. Journal of Medical Genetics, 2006, 43, 769-787.	1.5	347
262	An Improved Statistic for Detecting Over-Represented Gene Ontology Annotations in Gene Sets. Lecture Notes in Computer Science, 2006, , 85-98.	1.0	15
263	Induction of Macrophage Chemotaxis by Aortic Extracts of the mgR Marfan Mouse Model and a GxxPG-Containing Fibrillin-1 Fragment. Circulation, 2006, 114, 1855-1862.	1.6	88
264	Shprintzen-Goldberg syndrome: Fourteen new patients and a clinical analysis. American Journal of Medical Genetics, Part A, 2005, 135A, 251-262.	0.7	72
265	RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: A potential factor in the pathogenesis of the Marfan syndrome. Human Genetics, 2005, 116, 51-61.	1.8	71
266	Gene-Ontology analysis reveals association of tissue-specific 5' CpG-island genes with development and embryogenesis. Human Molecular Genetics, 2004, 13, 1969-1978.	1.4	31
267	A molecular pathogenesis for transcription factor associated poly-alanine tract expansions. Human Molecular Genetics, 2004, 13, 2351-2359.	1.4	139
268	Ontologizing gene-expression microarray data: characterizing clusters with Gene Ontology. Bioinformatics, 2004, 20, 979-981.	1.8	81
269	Marfan Syndrome: A Primer for Clinicians and Scientists. , 2004, , .		11
270	Diagnosis and Treatment of Marfan Syndrome—A Summary. , 2004, , 13-23.		1

16

#	Article	IF	CITATIONS
271	Update of the UMD-FBN1mutation database and creation of anFBN1polymorphism database. Human Mutation, 2003, 22, 199-208.	1.1	299
272	TGGE screening of the entireFBN1coding sequence in 126 individuals with marfan syndrome and related fibrillinopathies. Human Mutation, 2002, 20, 197-208.	1.1	69
273	Mutations of FBN1 and genotype-phenotype correlations in Marfan syndrome and related fibrillinopathies. Human Mutation, 2002, 20, 153-161.	1.1	176
274	Classic, atypically severe and neonatal Marfan syndrome: twelve mutations and genotype–phenotype correlations in FBN1 exonsÂ24–40. European Journal of Human Genetics, 2001, 9, 13-21.	1.4	142
275	Clustering of mutations associated with mild Marfan-like phenotypes in the 3? region ofFBN1 suggests a potential genotype-phenotype correlation. , 2000, 91, 212-221.		57
276	Novel exon skipping mutation in the fibrillin-1 gene: Two â€~hot spots' for the neonatal Marfan syndrome. Clinical Genetics, 1999, 55, 110-117.	1.0	89
277	Bipolar clamping improves the sensitivity of mutation detection by temperature gradient gel electrophoresis. Electrophoresis, 1998, 19, 1347-1350.	1.3	13
278	Two novel mutations in exons 19a and 20 and a Bsal polymorphism in a newly characterized intron of the neurofibromatosis type 1 gene. Human Genetics, 1998, 102, 367-371.	1.8	8
279	A novel de novo mutation in exon 14 of the fibrillin-1 gene associated with delayed secretion of fibrillin in a patient with a mild Marfan phenotype. Human Genetics, 1997, 100, 195-200.	1.8	19
280	Different release of cytokines into the cerebrospinal fluid following surgery for intra- and extra-axial brain tumours. Acta Neurochirurgica, 1997, 139, 619-624.	0.9	29
281	New evidence for a mutation hotspot in exon 37 of theNF1 gene. , 1997, 9, 374-377.		14
282	Three novel mutations of the NF1 gene detected by temperature gradient gel electrophoresis of exons 5 and 8. Electrophoresis, 1996, 17, 1559-1563.	1.3	11
283	Recurrent 2-bp deletion in exon 10c of the NF1 gene in two cases of von Recklinghausen neurofibromatosis. , 1996, 7, 85-88.		14
284	Competitive Sports and the Progression of Spondylolisthesis. Journal of Pediatric Orthopaedics, 1996, 16, 364-369.	0.6	24
285	Two recurrent nonsense mutations and a 4 bp deletion in a quasi-symmetric element in exon 37 of the NF1 gene. Human Genetics, 1995, 96, 95-98.	1.8	46
286	Artificial Intelligence in Predicting Clinical Outcome in COVID-19 Patients from Clinical, Biochemical and a Qualitative Chest X-Ray Scoring System. Reports in Medical Imaging, 0, Volume 14, 27-39.	0.8	4
287	Computational Exome and Genome Analysis. , 0, , .		6