
Sofoklis S Makridis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2747640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer-stable magnesium nanocomposites prepared byÂlaser ablation for efficient hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 11530-11535.	7.1	79
2	Hydrogenation behavior in rectangular metal hydride tanks under effective heat management processes for green building applications. Energy, 2018, 142, 518-530.	8.8	46
3	A simulated roadmap of hydrogen technology contribution to climate change mitigation based on <scp>R</scp> epresentative <scp>C</scp> oncentration <scp>P</scp> athways considerations. Energy Science and Engineering, 2018, 6, 116-125.	4.0	34
4	Investigation of ZrFe 2 -type materials for metal hydride hydrogen compressor systems by substituting Fe with Cr or V. International Journal of Hydrogen Energy, 2014, 39, 21380-21385.	7.1	31
5	High coercivity in boron substituted Sm-Co melt-spun magnets. IEEE Transactions on Magnetics, 2002, 38, 2922-2924.	2.1	29
6	Effective thermal management of a cylindrical MgH2 tank including thermal coupling with an operating SOFC and the usage of extended surfaces during the dehydrogenation process. International Journal of Hydrogen Energy, 2016, 41, 5693-5708.	7.1	23
7	Design and optimization of advanced materials and processes for efficient hydrogen storage. Computers and Chemical Engineering, 2009, 33, 1077-1090.	3.8	20
8	Structural, microstructural and magnetic properties of nanocomposite isotropic Sm(CobalFe0.1MyZr0.04B0.04)7.5 ribbons with M=Ni, Cu and y=0.09 and 0.12. Journal of Magnetism and Magnetic Materials, 2008, 320, 2322-2329.	2.3	19
9	High-temperature activated AB2nanopowders for metal hydride hydrogen compression. International Journal of Energy Research, 2014, 38, 477-486.	4.5	19
10	Effects of boron substitution on the structural and magnetic properties of melt-spun Sm(Co,Fe,Zr)[sub 7.5] and Sm(Co,Fe,Zr,Cu)[sub 7.5] magnets. Journal of Applied Physics, 2002, 91, 7899.	2.5	18
11	Structural and Electronic Properties of the Hydrogenated ZrCr2 Laves Phases. Journal of Physical Chemistry C, 2010, 114, 4221-4227.	3.1	17
12	Structural and magnetic properties of Sm(Co0.7Fe0.1Ni0.12Zr0.04B0.04)7.5 melt spun isotropic and anisotropic ribbons. Journal of Rare Earths, 2012, 30, 691-695.	4.8	17
13	Synthesis, characterisation and hydrogen sorption properties of mechanically alloyed Mg(Ni1-xMnx)2. Materials Today Energy, 2019, 13, 186-194.	4.7	16
14	Wide-angle X-ray diffraction and differential scanning calorimetry study of the crystallization of poly(ethylene naphthalate), poly(butylene naphthalate), and their copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 843-860.	2.1	14
15	A complete transport validated model on a zeolite membrane for carbon dioxide permeance and capture. Applied Thermal Engineering, 2015, 74, 36-46.	6.0	14
16	Modeling and Simulation for Absorption-Desorption Cyclic Process on a Three-Stage Metal Hydride Hydrogen Compressor. Computer Aided Chemical Engineering, 2013, , 379-384.	0.5	13
17	Hydrogen Storage Technologies for Smart Grid Applications. Challenges, 2017, 8, 13.	1.7	13
18	Design and Modelling Methodologies of an Efficient and Lightweight Carbon-fiber Reinforced Epoxy Monocoque Chassis, Suitable for an Electric Car. Material Science and Engineering With Advanced Research, 2017, 2, 5-12.	0.3	12

SOFOKLIS S MAKRIDIS

#	Article	IF	CITATIONS
19	Electric Car Chassis for Shell Eco Marathon Competition: Design, Modelling and Finite Element Analysis. World Electric Vehicle Journal, 2019, 10, 8.	3.0	10
20	Nitrogenation and sintering of (Nd-Zr)Fe10Si2 tetragonal compounds for permanent magnets applications. Journal of Alloys and Compounds, 2019, 784, 996-1002.	5.5	9
21	Two-Stage Hydrogen Compression Using Zr-Based Metal Hydrides. Solid State Phenomena, 2012, 194, 249-253.	0.3	8
22	Sm(Co, Fe, Cu, Zr, C)8.2 ribbons for high-temperature magnets. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1921-E1923.	2.3	6
23	Investigating Thermal Performance of Residential Buildings in Marmari Region, South Evia, Greece. Challenges, 2020, 11, 5.	1.7	6
24	Optimised ultrafast lightweight design and finite element modelling of a CFRP monocoque electric car chassis. International Journal of Electric and Hybrid Vehicles, 2019, 11, 255.	0.3	6
25	Nanostructured melt-spun Sm(Co,Fe,Zr,B)/sub 7_5/ alloys for high-temperature magnets. IEEE Transactions on Magnetics, 2003, 39, 2869-2871.	2.1	5
26	Hydrogenation properties of the TiBx structures. International Journal of Hydrogen Energy, 2011, 36, 12268-12278.	7.1	5
27	Integration of Hydrogen Energy Technologies in Autonomous Power Systems. Power Systems, 2008, , 23-81.	0.5	5
28	A Mechanical Property, Non-Destructive Testing and Microstructural Investigation of Power Plant Mechanical Systems. Material Science and Engineering With Advanced Research, 2018, 2, 1-12.	0.3	5
29	Structural, Microchemistry, and Hydrogenation Properties of TiMn _{0.4} Fe _{0.2} V _{0.4} , TiMn _{0.1} Fe _{0.2} V _{0.7} and Ti _{0.4} Zr _{0.6} Mn _{0.4} Fe _{0.2} V _{0.4} Petal	0.9	3
30	Hydrides, Journal of Nanoscience and Nanotechnology, 2012, 12, 4688-4696. Lightweight Design and Welding Manufacturing of a Hydrogen Fuel Cell Powered Car's Chassis. Challenges, 2018, 9, 25.	1.7	3
31	On the microstructure and the recrystallization procedure of melt-spun Nd7.5Fe84.8Ti7.7â^'xNbx alloys. Journal of Magnetism and Magnetic Materials, 2003, 267, 19-25.	2.3	2
32	Effect of Wheel Speed and Boron Content on Microstructure and Crystallographic Texture of Boron Substituted Sm-Co Melt Spun Ribbons. Materials Science Forum, 2006, 514-516, 359-363.	0.3	2
33	Effect of V Substitution on the Composite Zr-Ti-Cr-V-Ni Intermetallic Hydrides. Materials Science Forum, 0, 636-637, 887-894.	0.3	2
34	Structural and magnetic properties of rhombohedral Sm/sub 2/(Co,Fe,Cr)/sub 17/B/sub x/ and Sm/sub 2/(Co,Fe,Mn)/sub 17/B/sub x/ compounds. IEEE Transactions on Magnetics, 2003, 39, 2872-2874.	2.1	1
35	Structural and magnetic properties of rare earth-transition metal compounds for hydrogen storage materials. Journal of Alloys and Compounds, 2005, 404-406, 216-219.	5.5	1
36	Intermetallic Hydrides Based on (Zr-Ti)(Fe-Cr) ₂ Type of Compounds. Materials Science Forum, 2006, 514-516, 666-671.	0.3	1

#	Article	IF	CITATIONS
37	Structural and Magnetic Properties of New Zr(Fe _{0.8} Cu _{0.2}) ₂ and Zr(Fe _{0.8} Cu _{0.1} Co _{0.1}) _{2Hydrogen Storage Materials. Materials Science Forum, 2006, 514-516, 432-436.}	. <u>0.</u> 3 .gt;	1
38	Design and Optimization of Advanced Materials and Processes for Efficient Hydrogen storage. Computer Aided Chemical Engineering, 2009, , 183-188.	0.5	1
39	Nanostructured melt-spun Sm(Co-Fe-Zr-B)/sub 7.5/ alloys for high temperature magnets. , 0, , .		0
40	Structural and magnetic properties of Rhombohedral Sm/sub 2/(Co,Fe,Cr)/sub 17/B/sub x/and Sm/sub 2/(Co,Fe,Mn)/sub 17/B/sub x/ compounds. , 0, , .		0
41	Relaxation studies at high temperatures of precipitation hardened Sm(Co/sub bal/Fe/sub 0.1/Cu/sub) Tj ETQq1 1 C).784314	rgBT /Overlo
42	Structure and magnetic properties of Sm9(Co1â^'Zr)4 alloys. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E377-E379.	2.3	0
43	Structural, Microstructural and Magnetic Properties of Ball Milled Boron-Substituted Sm(Co,Fe,Cu,Zr) _{7.5} Compounds. Materials Science Forum, 2006, 514-516, 1289-1293.	0.3	0
44	Structural and Magnetic Properties of Sm(Co _{bal} Fe _{0.1} Ni _{0.12} Zr _{0.04< Melt Spun Ribbons. Materials Science Forum, 0, 636-637, 404-410.}	; /ou b>	B <sub>< td=""></sub><>
45	Synthesis and Characterization of TiFe _{0.7a $<$i>x} Min _{0.3} V _{<i>x</i>} (<i>x</i> = 0.05, and 0.1) and Ti _{1â²<i>y</i>} Ta _{<i>y</i>} Fe _{0.7} Min _{0.3} (<i>y</i> = 0.2, and) Tj E	TQq110	.7 8 4314 rgE
46	Nanotechnology, 2012, 12, 9067-9075. Investigation on the Hydrogenation Properties of Sm(Co0.6Fe0.2Zr0.16B0.04)7.5 Compound. Journal of Nanoscience With Advanced Technology, 2015, 1, 35-39.	0.8	0
47	Third Issue in Raw Materials, Permanent Magnets, Biomaterials and Graphene. Material Science and Engineering With Advanced Research, 2016, 1, 22.	0.3	0
48	Complete Modeling of the Hydrogen Stored in a Spherical Cavity. Advances in Science, Technology and Engineering Systems, 2018, 3, 122-129.	0.5	0