
Tim L Setter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2747294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drought deteriorated the nutritional quality of cottonseed by altering fatty acids and amino acids compositions in cultivars with contrasting drought sensitivity. Environmental and Experimental Botany, 2022, 194, 104747.	2.0	9
2	Role of Tuber Developmental Processes in Response of Potato to High Temperature and Elevated CO2. Plants, 2021, 10, 871.	1.6	7
3	Flower Development in Cassava Is Feminized by Cytokinin, While Proliferation Is Stimulated by Anti-Ethylene and Pruning: Transcriptome Responses. Frontiers in Plant Science, 2021, 12, 666266.	1.7	12
4	Environmental responsiveness of flowering time in cassava genotypes and associated transcriptome changes. PLoS ONE, 2021, 16, e0253555.	1.1	4
5	The anti-ethylene growth regulator silver thiosulfate (STS) increases flower production and longevity in cassava (Manihot esculenta Crantz). Plant Growth Regulation, 2020, 90, 441-453.	1.8	30
6	Effect of Pruning Young Branches on Fruit and Seed Set in Cassava. Frontiers in Plant Science, 2020, 11, 1107.	1.7	15
7	Induction of Earlier Flowering in Cassava through Extended Photoperiod. Agronomy, 2020, 10, 1273.	1.3	15
8	Signal coordination before, during and after stomatal closure in response to drought stress. New Phytologist, 2019, 224, 675-688.	3.5	27
9	Science-based intensive agriculture: Sustainability, food security, and the role of technology. Global Food Security, 2019, 23, 236-244.	4.0	56
10	Partitioning index and non-structural carbohydrate dynamics among contrasting cassava genotypes under early terminal water stress. Environmental and Experimental Botany, 2019, 163, 24-35.	2.0	15
11	Identification of FT family genes that respond to photoperiod, temperature and genotype in relation to flowering in cassava (Manihot esculenta, Crantz). Plant Reproduction, 2019, 32, 181-191.	1.3	40
12	Induction of flowering in cassava through grafting. Journal of Plant Breeding and Crop Science, 2017, 9, 19-29.	0.8	36
13	Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz). PLoS ONE, 2017, 12, e0181460.	1.1	44
14	Effects of low nitrogen on chlorophyll content and dry matter accumulation in maiz. African Journal of Agricultural Research Vol Pp, 2016, 11, 1001-1007.	0.2	14
15	Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology, 2016, 34, 562-570.	9.4	340
16	Comparative transcriptomes between viviparous1 and wildtype maize developing endosperms in response to water deficit. Environmental and Experimental Botany, 2016, 123, 116-124.	2.0	1
17	Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel. Theoretical and Applied Genetics, 2016, 129, 1449-1463.	1.8	43
18	Field-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton. G3: Genes, Genomes, Genetics, 2016, 6, 865-879.	0.8	105

#	Article	IF	CITATIONS
19	Assimilate Allocation in Response to Water Deficit Stress. , 2015, , 733-739.		2
20	Molecular and functional characterization of two drought-induced zinc finger proteins, ZmZnF1 and ZmZnF2 from maize kernels. Environmental and Experimental Botany, 2015, 111, 13-20.	2.0	5
21	Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theoretical and Applied Genetics, 2013, 126, 2587-2596.	1.8	119
22	Cassava Response to Water Deficit in Deep Pots: Root and Shoot Growth, ABA, and Carbohydrate Reserves in Stems, Leaves and Storage Roots. Tropical Plant Biology, 2013, 6, 199-209.	1.0	44
23	The U.S. drought of 2012 in perspective: A call to action. Global Food Security, 2013, 2, 139-143.	4.0	189
24	Phenotypic approaches to drought in cassava: review. Frontiers in Physiology, 2013, 4, 93.	1.3	144
25	Analysis of Constituents for Phenotyping Drought Tolerance in Crop Improvement. Frontiers in Physiology, 2012, 3, 180.	1.3	22
26	Response of potato dry matter assimilation and partitioning to elevated CO2 at various stages of tuber initiation and growth. Environmental and Experimental Botany, 2012, 80, 27-34.	2.0	25
27	Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. Journal of Experimental Botany, 2011, 62, 701-716.	2.4	110
28	Genetic Analysis of Water Use Efficiency in Rice (Oryza sativa L.) at the Leaf Level. Rice, 2010, 3, 72-86.	1.7	32
29	Wheat production in Tunisia: Progress, inter-annual variability and relation to rainfall. European Journal of Agronomy, 2010, 33, 33-42.	1.9	79
30	Relationship of Carbohydrate and Abscisic Acid Levels to Kernel Set in Maize under Postpollination Water Deficit. Crop Science, 2010, 50, 980-988.	0.8	42
31	Physiological and Genetic Characterization of End-of-Day Far-Red Light Response in Maize Seedlings Â. Plant Physiology, 2010, 154, 173-186.	2.3	47
32	Effects of Simulated Dark Shipping on Photosynthetic Status and Post-shipping Performance in Phalaenopsis Sogo Yukidian â€V3'. Journal of the American Society for Horticultural Science, 2010, 135, 183-190.	0.5	11
33	Drought Tolerance in Maize. , 2009, , 311-344.		108
34	Water deficits in wheat: fructan exohydrolase (1â€FEH) mRNA expression and relationship to soluble carbohydrate concentrations in two varieties. New Phytologist, 2009, 181, 843-850.	3.5	68
35	Differential Growth Response to Salt Stress Among Selected Ornamentals. Journal of Plant Nutrition, 2007, 30, 1109-1126.	0.9	21
36	Recent Advances in Molecular Breeding of Cassava For Improved Drought Stress Tolerance. , 2007, , 701-711.		12

#	Article	IF	CITATIONS
37	A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene*. Plant Molecular Biology, 2005, 58, 447-464.	2.0	105
38	Response of Cassava Leaf Area Expansion to Water Deficit: Cell Proliferation, Cell Expansion and Delayed Development. Annals of Botany, 2004, 94, 605-613.	1.4	130
39	Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance. Journal of Experimental Botany, 2004, 55, 1751-1760.	2.4	64
40	Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environmental and Experimental Botany, 2004, 51, 259-271.	2.0	91
41	Genetic Dissection of Drought Tolerance in Maize. Books in Soils, Plants, and the Environment, 2004, ,	0.1	17
42	Comparative Transcriptional Profiling of Placenta and Endosperm in Developing Maize Kernels in Response to Water Deficit. Plant Physiology, 2003, 131, 568-582.	2.3	158
43	Response of Potato Tuber Cell Division and Growth to Shade and Elevated CO2. Annals of Botany, 2003, 91, 373-381.	1.4	34
44	Ecophysiology of Acer rubrum seedlings from contrasting hydrologic habitats: growth, gas exchange, tissue water relations, abscisic acid and carbon isotope discrimination. Tree Physiology, 2003, 23, 841-850.	1.4	45
45	Abscisic Acid Catabolism in Maize Kernels in Response to Water Deficit at Early Endosperm Development. Annals of Botany, 2002, 90, 623-630.	1.4	47
46	Loss of Kernel Set Due to Water Deficit and Shade in Maize. Crop Science, 2001, 41, 1530-1540.	0.8	213
47	Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. Journal of Experimental Botany, 2001, 52, 1401-1408.	2.4	114
48	Response of Cassava to Water Deficit: Leaf Area Growth and Abscisic Acid. Crop Science, 2000, 40, 131-137.	0.8	106
49	Regulation of endoreduplication in maize (Zea mays L.) endosperm. Isolation of a novel B1-type cyclin and its quantitative analysis. Plant Molecular Biology, 1999, 41, 245-258.	2.0	41
50	Inhibition of maize endosperm cell division and endoreduplication by exogenously applied abscisic acid. Physiologia Plantarum, 1998, 104, 266-272.	2.6	49
51	Alternative splicing of cyclin transcripts in maize endosperm. Gene, 1997, 195, 167-175.	1.0	14
52	Water deficit in developing endosperm of maize: cell division and nuclear DMA endoreduplication. Plant, Cell and Environment, 1995, 18, 1034-1040.	2.8	82
53	Tubulin isotypes in maize endosperm. Alterations during development and water deficit. Physiologia Plantarum, 1995, 94, 158-163.	2.6	3
54	Tubulin isotypes in maize endosperm. Alterations during development and water deficit. Physiologia Plantarum, 1995, 94, 158-163.	2.6	3

#	Article	IF	CITATIONS
55	Endorsperm Development of Maize Defective Kernel (dek) Mutants. Auxin and Cytokinin Levels. Annals of Botany, 1993, 72, 1-6.	1.4	43

Role of Auxin in Maize Endosperm Development (Timing of Nuclear DNA Endoreduplication, Zein) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

57	Water Deficit Induces Abscisic Acid Accumulation in Endosperm of Maize Viviparous Mutants. Plant Physiology, 1992, 98, 353-356.	2.3	23
58	Endosperm Cell Division in Maize Kernels Cultured at Three Levels of Water Potential. Plant Physiology, 1992, 99, 1051-1056.	2.3	23
59	Influence of Water Deficit on Maize Endosperm Development. Plant Physiology, 1991, 97, 154-164.	2.3	138
60	Timing of Kernel Development in Water-stressed Maize: Water Potentials and Abscisic Acid Concentrations. Annals of Botany, 1990, 66, 665-672.	1.4	36
61	Gibberellic Acid Regulates Cell Wall Extensibility in Wheat (<i>Triticum aestivum</i> L.). Plant Physiology, 1990, 92, 242-245.	2.3	67
62	Abscisic Acid Inhibition of Endosperm Cell Division in Cultured Maize Kernels. Plant Physiology, 1990, 94, 1330-1336.	2.3	71
63	Relationship Between Photosynthate Supply and Endosperm Development in Maize. Annals of Botany, 1989, 64, 481-487.	1.4	17
64	Photosynthesis and Water Vapor Exchange of Pigeonpea Leaves in Response to Water Deficit and Recovery. Crop Science, 1988, 28, 141-145.	0.8	20
65	Carbon Dioxide and Light Responses of Photosynthesis in Cowpea and Pigeonpea during Water Deficit and Recovery. Plant Physiology, 1987, 85, 990-995.	2.3	32
66	Sugar and Starch Redistribution in Maize in Response to Shade and Ear Temperature Treatment 1. Crop Science, 1986, 26, 575-579.	0.8	28
67	GROWTH AND [¹⁴ C] SUCROSE UPTAKE OF APICAL AND BASAL MAIZE KERNELS. Canadian Journal of Plant Science, 1986, 66, 863-869.	0.3	1
68	Enzyme Activities of Starch and Sucrose Pathways and Growth of Apical and Basal Maize Kernels. Plant Physiology, 1985, 79, 848-851.	2.3	65
69	Effect of Increased Temperature in Apical Regions of Maize Ears on Starch-Synthesis Enzymes and Accumulation of Sugars and Starch. Plant Physiology, 1985, 79, 852-855.	2.3	35
70	Reserve Carbohydrate in Maize Stem. Plant Physiology, 1984, 75, 617-622.	2.3	42
71	Photosynthate Partitioning in Pigeonpea in Response to Defoliation and Shading1. Crop Science, 1984, 24, 221.	0.8	4
72	Correlations of Plant Parameters with Nitrogen Fixation in Cowpea. Biological Agriculture and Horticulture, 1983, 1, 335-338.	0.5	0

#	Article	IF	CITATIONS
73	Time Course of Photosynthesis and Stomatal Conductance Following Changes in Light Flux Density 1. Crop Science, 1983, 23, 795-797.	0.8	0
74	Abscisic Acid Translocation and Metabolism in Soybeans following Depodding and Petiole Girdling Treatments. Plant Physiology, 1981, 67, 774-779.	2.3	75
75	Identification of a Dihydrophaseic Acid Aldopyranoside from Soybean Tissue. Plant Physiology, 1981, 68, 93-95.	2.3	19
76	Effect of Obstructed Translocation on Leaf Abscisic Acid, and Associated Stomatal Closure and Photosynthesis Decline. Plant Physiology, 1980, 65, 1111-1115.	2.3	118
77	Stomatal Closure and Photosynthetic Inhibition in Soybean Leaves Induced by Petiole Girdling and Pod Removal. Plant Physiology, 1980, 65, 884-887.	2.3	93
78	Partitioning of 14C-Photosynthate, and Long Distance Translocation of Amino Acids in Preflowering and Flowering, Nodulated and Nonnodulated Soybeans. Plant Physiology, 1979, 64, 94-98.	2.3	27
79	Carbon Dioxide Exchange Rates, Transpiration, and Leaf Characters in Genetically Equivalent Ploidy Levels of Alfalfa 1. Crop Science, 1978, 18, 327-332.	0.8	28
80	Hormonal Regulation of Early Kernel Development. CSSA Special Publication - Crop Science Society of America, 0, , 25-42.	0.1	7