
Sergey Vasiliev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2746805/publications.pdf Version: 2024-02-01

SEDCEV VASILIEV

#	Article	IF	CITATIONS
1	Spin wave interferometer employing a local nonuniformity of the effective magnetic field. Journal of Applied Physics, 2007, 101, 113919.	2.5	80
2	Flux Jumps and H-T Diagram of Instability for MgB2. Journal of Low Temperature Physics, 2003, 130, 175-191.	1.4	41
3	Three terminal capacitance technique for magnetostriction and thermal expansion measurements. Review of Scientific Instruments, 2004, 75, 2192-2196.	1.3	30
4	Mechanisms of magnetic and temperature hysteresis in ErFeO3 and TmFeO3 single crystals. Journal of Applied Physics, 2010, 108, .	2.5	23
5	Magnetostriction in superconducting MgB2. Physica B: Condensed Matter, 2002, 319, 286-292.	2.7	11
6	Orientation phase transition inFe3BO6: Experimental determination of the order of the transition. Physical Review B, 2006, 74, .	3.2	11
7	Analysis of the transient behavior of nucleation in the Fe40Ni40P14B6 glass. Journal of Alloys and Compounds, 2018, 744, 141-145.	5.5	11
8	The correlation between the transverse and longitudinal magnetostriction in a polycrystalline MgB2superconductor. Superconductor Science and Technology, 2003, 16, 707-713.	3.5	9
9	Crystallization kinetics of the Fe40Ni40P14B6 metallic glass in an extended range of heating rates. Journal of Materials Science, 2019, 54, 5788-5801.	3.7	8
10	Title is missing!. Journal of Low Temperature Physics, 2003, 130, 425-433.	1.4	7
11	Identification of the onset crystallization time in metallic glasses at isothermal conditions. Journal of Non-Crystalline Solids, 2017, 463, 102-107.	3.1	7
12	The structure of vortex matter avalanches in a niobium plate. Physica C: Superconductivity and Its Applications, 2002, 369, 82-86.	1.2	6
13	Giant Magnetostriction and Flux Jumps in Superconducting Nb3Al Polycrystalline Slab. Journal of Low Temperature Physics, 2005, 139, 239-246.	1.4	6
14	A comparison of the transient behavior of nucleation in Fe40Co40P14B6 and Fe40Ni40P14B6 metallic glasses. Journal of Alloys and Compounds, 2020, 824, 153926.	5.5	6
15	Oscillating Dynamics and Trajectory of the Single Vortex Line. Acta Physica Polonica A, 2006, 109, 641-646.	0.5	6
16	Two components of the magnetostriction of the crystalline metallic V3Si superconductor. Journal of Applied Physics, 2009, 105, 063918.	2.5	5
17	Correlation between parameters of Arrhenius-type temperature dependency for effective diffusivity governing glass crystallization. Journal of Non-Crystalline Solids, 2019, 518, 36-42.	3.1	5
18	Oscillation mode in the screening properties of Nb–Ti plate as a result of flux jumps. Physica C: Superconductivity and Its Applications, 2002, 369, 77-81.	1.2	4

SERGEY VASILIEV

#	Article	IF	CITATIONS
19	The Structure of Magnetic Avalanches: Experiment and Model for Avalanche Vortex Matter Penetration. Journal of Low Temperature Physics, 2003, 130, 165-174.	1.4	4
20	The Reversal of the Local Magnetic Field Profile atÂtheÂSurface of Superconducting Sample Caused byÂtheÂThermomagnetic Avalanche. Journal of Low Temperature Physics, 2009, 154, 55-67.	1.4	4
21	The influence of crystal anisotropy on the critical state stability and flux jump dynamics of a single crystal of La _{1.85} Sr _{0.15} CuO ₄ . Superconductor Science and Technology, 2012, 25, 035005.	3.5	4
22	Energy Absorption by a Single Abrikosov's Vortex in NbTi and YBaCuO Superconductors. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2033-2036.	1.8	4
23	Relation between the structural parameters of metallic glasses at the onset crystallization temperatures and threshold values of the effective diffusion coefficients. Physics of Metals and Metallography, 2017, 118, 764-772.	1.0	4
24	Dynamical transformation of the critical state caused by the thermomagnetic avalanches. Physica C: Superconductivity and Its Applications, 2007, 460-462, 776-777.	1.2	3
25	Fine Structure of Thermal Runaway Process in the V3Si Single–crystal Superconductor as a Result of Pinning Center Response. Physics Procedia, 2012, 36, 634-637.	1.2	3
26	Stability of Bilayer Superconductors against Thermomagnetic Avalanche. Acta Physica Polonica A, 2014, 126, A-84-A-88.	0.5	3
27	Moderation of the Flux Jumps Dynamics by Eddy-Currents in a Disk Shape NbTi Superconductor. Acta Physica Polonica A, 2004, 106, 777-783.	0.5	3
28	The Structure of Thermomagnetic Avalanches in Superconducting Disc of NbTi. Acta Physica Polonica A, 2006, 109, 661-668.	0.5	3
29	Oscillating modes of a massive single vortex line in an anisotropic superconductor: The role of temperature. Low Temperature Physics, 2013, 39, 102-106.	0.6	2
30	Threshold Field for Runaway Instability of Bilayer Hard Type-II Superconductor. Journal of Low Temperature Physics, 2015, 179, 75-82.	1.4	2
31	Fabrication of consolidated layered samples by high-pressure torsion processing of rapidly solidified Al-based ribbons with amorphous and crystalline structures. Materials Today Communications, 2020, 24, 101080.	1.9	2
32	Effective Diffusion Coefficients and Thermal Stability of the Structure of Metallic Glass Fe48Co32P14B6. Physics of the Solid State, 2020, 62, 2258-2265.	0.6	2
33	The Influence of Fast Neutron Irradiation on the Magnetostriction of Ceramic YBa ₂ Cu ₃ O _{7-δ} Sample. Acta Physica Polonica A, 2004, 106, 739-744.	0.5	2
34	Size Effect in Impedance of Nb ₃ Al Superconductor. Acta Physica Polonica A, 2006, 109, 555-559.	0.5	2
35	Giant Magnetostriction Jumps in Conventional NbTi Superconductor. Acta Physica Polonica A, 2006, 109, 633-639.	0.5	2
36	The Influence of Magnetic History on the Stability of Critical State and the Dynamics of Flux Jumps in Conventional NbTi Superconductor. Acta Physica Polonica A, 2010, 118, 343-345.	0.5	2

SERGEY VASILIEV

#	Article	IF	CITATIONS
37	The Influence of the Sample Shape on the Flux Jumps Dynamics in Conventional NbTi Superconductor. Acta Physica Polonica A, 2008, 114, 235-241.	0.5	2
38	Excitation of oscillations of the magnetic induction in a Nb–Ti slab as a result of a thermomagnetic flux avalanche. Low Temperature Physics, 2002, 28, 387-390.	0.6	1
39	Role of the field dependence of the heat capacity for the flux jump process in HTSC materials. Physica C: Superconductivity and Its Applications, 2002, 369, 227-231.	1.2	1
40	Giant magnetostriction and flux jumps in superconducting Nb3Al polycrystalline slab. Journal of Low Temperature Physics, 2005, 139, 239-246.	1.4	1
41	Dynamics of single vortex line in the field of external alternative current. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1198-1199.	1.2	1
42	The effect of transient nucleation behavior on thermal stability of Fe48Co32P14B6 metallic glass. Journal of Alloys and Compounds, 2021, 869, 159285.	5.5	1
43	Critical State Stability and Flux Jumps' Dynamics in a Single Crystal of YBa ₂ Cu ₃ O _{7-Î} . Acta Physica Polonica A, 2012, 121, 836-840.	0.5	1
44	Dynamics of Thermomagnetic Avalanches in Melt-Textured YBaCuO Superconductors. Acta Physica Polonica A, 2007, 111, 153-158.	0.5	1
45	The Influence of the Magnetic Field on the Dynamics of the Flux Jumps in the Flux Flow Model. Acta Physica Polonica A, 2010, 118, 340-342.	0.5	1
46	Pinning induced magnetostriction in superconductive MgB2 ceramics. Physica Status Solidi A, 2003, 196, 82-85.	1.7	0
47	Coercive field of Fe3BO6 , 2006, , .		0
48	The critical state instability in Nb3Al: Experiment and simulation. Physica C: Superconductivity and Its Applications, 2007, 460-462, 768-769.	1.2	0
49	The magnetic field dependence of effective resistivity in a conventional superconductor: Contactless measurements. Physica C: Superconductivity and Its Applications, 2007, 460-462, 854-855.	1.2	Ο
50	Boundaries of the critical state stability in a hard superconductor Nb3Al in theH–Tplane. Low Temperature Physics, 2013, 39, 329-337.	0.6	0
51	Magnetoelastic Properties of La _{0.744} Ba _{0.186} MnO ₃ Single Crystals. Acta Physica Polonica A, 2004, 105, 155-162.	0.5	О