List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2746741/publications.pdf Version: 2024-02-01

VUN S SONC

#	Article	IF	CITATIONS
1	The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature, 2016, 538, 201-206.	13.7	1,216
2	Robust and scalable inference of population history from hundreds of unphased whole genomes. Nature Genetics, 2017, 49, 303-309.	9.4	550
3	Genomic evidence for the Pleistocene and recent population history of Native Americans. Science, 2015, 349, aab3884.	6.0	449
4	Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature, 2018, 553, 203-207.	13.7	304
5	Loci associated with skin pigmentation identified in African populations. Science, 2017, 358, .	6.0	260
6	Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster. PLoS Genetics, 2012, 8, e1003090.	1.5	259
7	Early human dispersals within the Americas. Science, 2018, 362, .	6.0	230
8	Deep Learning for Population Genetic Inference. PLoS Computational Biology, 2016, 12, e1004845.	1.5	217
9	Estimating Variable Effective Population Sizes from Multiple Genomes: A Sequentially Markov Conditional Sampling Distribution Approach. Genetics, 2013, 194, 647-662.	1.2	187
10	Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Science Translational Medicine, 2021, 13, eabh2624.	5.8	155
11	Necrotizing enterocolitis is preceded by increased gut bacterial replication, <i>Klebsiella</i> , and fimbriae-encoding bacteria. Science Advances, 2019, 5, eaax5727.	4.7	120
12	Inference and analysis of population-specific fine-scale recombination maps across 26 diverse human populations. Science Advances, 2019, 5, eaaw9206.	4.7	111
13	Efficiently Inferring the Demographic History of Many Populations With Allele Count Data. Journal of the American Statistical Association, 2020, 115, 1472-1487.	1.8	90
14	Fundamental limits on the accuracy of demographic inference based on the sample frequency spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7677-7682.	3.3	82
15	Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data. Genome Research, 2015, 25, 268-279.	2.4	78
16	The impact of ribosomal interference, codon usage, and exit tunnel interactions on translation elongation rate variation. PLoS Genetics, 2018, 14, e1007166.	1.5	77
17	A Simple Method for Finding Explicit Analytic Transition Densities of Diffusion Processes with General Diploid Selection. Genetics, 2012, 190, 1117-1129.	1.2	69
18	Distortion of genealogical properties when the sample is very large. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2385-2390.	3.3	68

#	Article	IF	CITATIONS
19	Descartes' rule of signs and the identifiability of population demographic models from genomic variation data. Annals of Statistics, 2014, 42, 2469-2493.	1.4	68
20	Differences in the path to exit the ribosome across the three domains of life. Nucleic Acids Research, 2019, 47, 4198-4210.	6.5	68
21	A novel spectral method for inferring general diploid selection from time series genetic data. Annals of Applied Statistics, 2014, 8, 2203-2222.	0.5	67
22	Modelâ€based detection and analysis of introgressed Neanderthal ancestry in modern humans. Molecular Ecology, 2018, 27, 3873-3888.	2.0	67
23	Efficient Computation of the Joint Sample Frequency Spectra for Multiple Populations. Journal of Computational and Graphical Statistics, 2017, 26, 182-194.	0.9	64
24	XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Science Advances, 2021, 7, .	4.7	64
25	Multi-locus Analysis of Genomic Time Series Data from Experimental Evolution. PLoS Genetics, 2015, 11, e1005069.	1.5	63
26	Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Systems, 2017, 4, 636-644.e9.	2.9	62
27	High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability. Nature Genetics, 2018, 50, 1311-1317.	9.4	61
28	An Accurate Sequentially Markov Conditional Sampling Distribution for the Coalescent With Recombination. Genetics, 2011, 187, 1115-1128.	1.2	56
29	Two-Locus Likelihoods Under Variable Population Size and Fine-Scale Recombination Rate Estimation. Genetics, 2016, 203, 1381-1399.	1.2	54
30	Inference of complex population histories using whole-genome sequences from multiple populations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17115-17120.	3.3	52
31	Inference of population history using coalescent HMMs: review and outlook. Current Opinion in Genetics and Development, 2018, 53, 70-76.	1.5	51
32	Minimum Recombination Histories by Branch and Bound. Lecture Notes in Computer Science, 2005, , 239-250.	1.0	49
33	Efficient computation of close lower and upper bounds on the minimum number of recombinations in biological sequence evolution. Bioinformatics, 2005, 21, i413-i422.	1.8	45
34	A sequentially Markov conditional sampling distribution for structured populations with migration and recombination. Theoretical Population Biology, 2013, 87, 51-61.	0.5	43
35	Genetic and socioeconomic study of mate choice in Latinos reveals novel assortment patterns. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13621-13626.	3.3	41
36	Parsimonious Reconstruction of Sequence Evolution and Haplotype Blocks. Lecture Notes in Computer Science, 2003, , 287-302.	1.0	40

#	Article	IF	CITATIONS
37	SM a SH: a benchmarking toolkit for human genome variant calling. Bioinformatics, 2014, 30, 2787-2795.	1.8	40
38	The Key Parameters that Govern Translation Efficiency. Cell Systems, 2020, 10, 183-192.e6.	2.9	39
39	Transition Densities and Sample Frequency Spectra of Diffusion Processes with Selection and Variable Population Size. Genetics, 2015, 200, 601-617.	1.2	37
40	The Site Frequency Spectrum for General Coalescents. Genetics, 2016, 202, 1549-1561.	1.2	33
41	Worldwide genetic variation of the IGHV and TRBV immune receptor gene families in humans. Life Science Alliance, 2019, 2, e201800221.	1.3	33
42	Analytic computation of the expectation of the linkage disequilibrium coefficient. Theoretical Population Biology, 2007, 71, 49-60.	0.5	31
43	General Triallelic Frequency Spectrum Under Demographic Models with Variable Population Size. Genetics, 2014, 196, 295-311.	1.2	31
44	A Principled Approach to Deriving Approximate Conditional Sampling Distributions in Population Genetics Models with Recombination. Genetics, 2010, 186, 321-338.	1.2	30
45	Geometry of the Sample Frequency Spectrum and the Perils of Demographic Inference. Genetics, 2018, 210, 665-682.	1.2	29
46	Estimating Copy Number and Allelic Variation at the Immunoglobulin Heavy Chain Locus Using Short Reads. PLoS Computational Biology, 2016, 12, e1005117.	1.5	28
47	SCITO-seq: single-cell combinatorial indexed cytometry sequencing. Nature Methods, 2021, 18, 903-911.	9.0	28
48	Importance sampling and the two-locus model with subdivided population structure. Advances in Applied Probability, 2008, 40, 473-500.	0.4	28
49	The yeast exoribonuclease Xrn1 and associated factors modulate RNA polymerase II processivity in 5â€~ and 3â€~ gene regions. Journal of Biological Chemistry, 2020, 295, 11435-11454.	1.6	25
50	Transporter genes in biosynthetic gene clusters predict metabolite characteristics and siderophore activity. Genome Research, 2021, 31, 239-250.	2.4	24
51	The Effects of Population Size Histories on Estimates of Selection Coefficients from Time-Series Genetic Data. Molecular Biology and Evolution, 2016, 33, 3002-3027.	3.5	22
52	Closed-Form Two-Locus Sampling Distributions: Accuracy and Universality. Genetics, 2009, 183, 1087-1103.	1.2	20
53	Joint estimation of gene conversion rates and mean conversion tract lengths from population SNP data. Bioinformatics, 2009, 25, i231-i239.	1.8	20
54	Three-way clustering of multi-tissue multi-individual gene expression data using semi-nonnegative tensor decomposition. Annals of Applied Statistics, 2019, 13, 1103-1127.	0.5	20

#	Article	IF	CITATIONS
55	Properties of Subtree-Prune-and-Regraft Operations on Totally-Ordered Phylogenetic Trees. Annals of Combinatorics, 2006, 10, 147-163.	0.3	19
56	An asymptotic sampling formula for the coalescent with Recombination. Annals of Applied Probability, 2010, 20, 1005-1028.	0.6	19
57	Blockwise HMM computation for large-scale population genomic inference. Bioinformatics, 2012, 28, 2008-2015.	1.8	19
58	diCal-IBD: demography-aware inference of identity-by-descent tracts in unrelated individuals. Bioinformatics, 2014, 30, 3430-3431.	1.8	19
59	Prediction of ribosome footprint profile shapes from transcript sequences. Bioinformatics, 2016, 32, i183-i191.	1.8	19
60	Theoretical analysis of the distribution of isolated particles in totally asymmetric exclusion processes: Application to mRNA translation rate estimation. Physical Review E, 2018, 97, 012106.	0.8	18
61	Accurate assembly of the olive baboon (<i>Papio anubis</i>) genome using long-read and Hi-C data. GigaScience, 2020, 9, .	3.3	18
62	Likelihood-based deconvolution of bulk gene expression data using single-cell references. Genome Research, 2021, 31, 1794-1806.	2.4	16
63	Padé approximants and exact two-locus sampling distributions. Annals of Applied Probability, 2012, 22, 576-607.	0.6	15
64	Operator norm inequalities between tensor unfoldings on the partition lattice. Linear Algebra and Its Applications, 2017, 520, 44-66.	0.4	15
65	The distribution of waiting distances in ancestral recombination graphs. Theoretical Population Biology, 2021, 141, 34-43.	0.5	15
66	Algorithms to Distinguish the Role of Gene-Conversion from Single-Crossover Recombination in the Derivation of SNP Sequences in Populations. Journal of Computational Biology, 2007, 14, 1273-1286.	0.8	14
67	Average Probability that a "Cold Hit―in a DNA Database Search Results in an Erroneous Attribution. Journal of Forensic Sciences, 2009, 54, 22-27.	0.9	14
68	Counting All Possible Ancestral Configurations of Sample Sequences in Population Genetics. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3, 239-251.	1.9	13
69	Importance sampling and the two-locus model with subdivided population structure. Advances in Applied Probability, 2008, 40, 473-500.	0.4	13
70	A Concise Necessary and Sufficient Condition for the Existence of a Galled-Tree. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3, 186-191.	1.9	12
71	General Epistatic Models of the Risk of Complex Diseases. Genetics, 2010, 186, 1467-1473.	1.2	12
72	Closed-Form Asymptotic Sampling Distributions under the Coalescent with Recombination for an Arbitrary Number of Loci. Advances in Applied Probability, 2012, 44, 391-407.	0.4	12

#	Article	IF	CITATIONS
73	A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks. Advances in Neural Information Processing Systems, 2018, 31, 8594-8605.	2.8	12
74	Decoding Coalescent Hidden Markov Models in Linear Time. Lecture Notes in Computer Science, 2014, 8394, 100-114.	1.0	9
75	Na Li and Matthew Stephens on Modeling Linkage Disequilibrium. Genetics, 2016, 203, 1005-1006.	1.2	8
76	SpectralTDF: transition densities of diffusion processes with time-varying selection parameters, mutation rates and effective population sizes. Bioinformatics, 2016, 32, 795-797.	1.8	8
77	Closed-Form Asymptotic Sampling Distributions under the Coalescent with Recombination for an Arbitrary Number of Loci. Advances in Applied Probability, 2012, 44, 391-407.	0.4	7
78	Riches of phenotype computationally extracted from microbial colonies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2822-E2831.	3.3	7
79	A graphical approach to multi-locus match probability computation: Revisiting the product rule. Theoretical Population Biology, 2007, 72, 96-110.	0.5	6
80	EGGTART: A tool to visualize the dynamics ofÂbiophysical transport under the inhomogeneous l-TASEP. Biophysical Journal, 2021, 120, 1309-1313.	0.2	4
81	Tractable diffusion and coalescent processes for weakly correlated loci. Electronic Journal of Probability, 2015, 20, .	0.5	3
82	Transferability of Geometric Patterns from Protein Self-Interactions to Protein-Ligand Interactions. , 2021, , .		1