
Johannes Spaethe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2746402/publications.pdf Version: 2024-02-01

IOHANNES SPAFTHE

#	Article	IF	CITATIONS
1	Caution with colour calculations: spectral purity is a poor descriptor of flower colour visibility. Annals of Botany, 2022, 130, 1-9.	2.9	11
2	Exploiting trap color to improve surveys of longhorn beetles. Journal of Pest Science, 2021, 94, 871-883.	3.7	25
3	Honey Bees Can Taste Amino and Fatty Acids in Pollen, but Not Sterols. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	20
4	Evidence for UV-green dichromacy in the basal hymenopteran Sirex noctilio (Siricidae). Scientific Reports, 2021, 11, 15601.	3.3	4
5	Does quantity matter to a stingless bee?. Animal Cognition, 2021, , 1.	1.8	2
6	Flower Color as Predictor for Nectar Reward Quantity in an Alpine Flower Community. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
7	Mechanisms of Nutritional Resource Exploitation by Insects. Insects, 2020, 11, 570.	2.2	7
8	Young bumblebees may rely on both direct pollen cues and early experience when foraging. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201615.	2.6	7
9	Effect of Trap Color on Captures of Bark- and Wood-Boring Beetles (Coleoptera; Buprestidae and) Tj ETQq1 1	. 0.784314 rg 2.2	gBT_/Overloc
10	Best be(e) on low fat: linking nutrient perception, regulation and fitness. Ecology Letters, 2020, 23, 545-554.	6.4	62
11	Adding Amino Acids to a Sucrose Diet Is Not Sufficient to Support Longevity of Adult Bumble Bees. Insects, 2020, 11, 247.	2.2	10
12	Color preference and spatial distribution of glaphyrid beetles suggest a key role in the maintenance of the color polymorphism in the peacock anemone (Anemone pavonina, Ranunculaceae) in Northern Greece. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 735-743.	1.6	23
13	Pollinator or pedigree: which factors determine the evolution of pollen nutrients?. Oecologia, 2019, 191, 349-358.	2.0	34
14	Species composition and elevational distribution of bumble bees (Hymenoptera, Apidae, Bombus) Tj ETQq0 C) 0 rgBT /Ove 1.1	rlock 10 Tf 50
15	Bumblebees are able to perceive amino acids via chemotactile antennal stimulation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 321-331.	1.6	32
16	Distributed plasticity in ant visual pathways following colour learning. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182813.	2.6	19
17	Neuronal Plasticity in the Mushroomâ€Body Calyx of Bumble Bee Workers During Early Adult Development. Developmental Neurobiology, 2019, 79, 287-302.	3.0	14
18	Learning of monochromatic stimuli in Apis cerana and Apis mellifera by means of PER conditioning. Journal of Insect Physiology, 2019, 114, 30-34.	2.0	8

JOHANNES SPAETHE

#	Article	IF	CITATIONS
19	Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cellular and Molecular Life Sciences, 2019, 76, 637-651.	5.4	29
20	Do honeybees (Apis mellifera) differentiate between different pollen types?. PLoS ONE, 2018, 13, e0205821.	2.5	13
21	Length of stimulus presentation and visual angle are critical for efficient visual PER conditioning in the restrained honey bee, Apis mellifera. Journal of Experimental Biology, 2018, 221, .	1.7	10
22	Opsin expression patterns coincide with photoreceptor development during pupal development in the honey bee, Apis mellifera. BMC Developmental Biology, 2018, 18, 1.	2.1	19
23	Innate colour preference, individual learning and memory retention in the ant Camponotus blandus. Journal of Experimental Biology, 2017, 220, 3315-3326.	1.7	30
24	Pitfalls of using confocal-microscopy based automated quantification of synaptic complexes in honeybee mushroom bodies (response to Peng and Yang 2016). Scientific Reports, 2017, 7, 9786.	3.3	10
25	The path to colour discrimination is S-shaped: behaviour determines the interpretation of colour models. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 983-997.	1.6	50
26	Impact of light and alarm pheromone on immediate early gene expression in the European honeybee, <scp><i>Apis mellifera</i></scp> . Entomological Science, 2017, 20, 122-126.	0.6	18
27	Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food. PeerJ, 2017, 5, e3858.	2.0	19
28	Hungry for quality—individual bumblebees forage flexibly to collect high-quality pollen. Behavioral Ecology and Sociobiology, 2016, 70, 1209-1217.	1.4	63
29	Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 643-655.	1.6	48
30	Ageâ€related and lightâ€induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectarâ€feeding ant <i>Camponotus rufipes</i> . Developmental Neurobiology, 2016, 76, 1041-1057.	3.0	49
31	Does <i>Traunsteinera globosa</i> (the globe orchid) dupe its pollinators through generalized food deception or mimicry?. Botanical Journal of the Linnean Society, 2016, 180, 269-294.	1.6	25
32	Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?. PLoS ONE, 2016, 11, e0164386.	2.5	20
33	Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris. PLoS ONE, 2015, 10, e0137413.	2.5	10
34	Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning. PLoS ONE, 2015, 10, e0134248.	2.5	22
35	Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys) Tj ETQq1 1 0.784	314 rgBT / 2.5	Overlock 10
36	A scientific note on peripheral compound eye morphology of small and normal-sized honey bee	1.5	2

A scientific note on peripheral compound eye morphology drones. Journal of Apicultural Research, 2015, 54, 59-61.

JOHANNES SPAETHE

#	Article	IF	CITATIONS
37	How to know which food is good for you: bumblebees use taste to discriminate between different concentrations of food differing in nutrient content. Journal of Experimental Biology, 2015, 218, 2233-2240.	1.7	79
38	Social Information in the Stingless Bee, Trigona corvina Cockerell (Hymenoptera: Apidae): The Use of Visual and Olfactory Cues at the Food Site. Sociobiology, 2015, 61, .	0.5	3
39	Royal jelly-like protein localization reveals differences in hypopharyngeal glands buildup and conserved expression pattern in brains of bumblebees and honeybees. Biology Open, 2014, 3, 281-288.	1.2	20
40	Elemental and non-elemental olfactory learning using PER conditioning in the bumblebee, Bombus terrestris. Apidologie, 2014, 45, 106-115.	2.0	37
41	Functional morphology of the visual system and mating strategies in bumblebees (Hymenoptera,) Tj ETQq1 1 C).784314 rg 2.3	BT ₃ Overlock
42	Behavioural evidence of colour vision in free flying stingless bees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 485-496.	1.6	45
43	Functional morphology of the visual system and mating strategies in bumblebees (Hymenoptera,) Tj ETQq1 1 C).784314 rg 2.3	BT /Overlock
44	Strategies of the honeybee Apis mellifera during visual search for vertical targets presented at various heights: a role for spatial attention?. F1000Research, 2014, 3, 174.	1.6	6
45	Sexual dimorphism in the olfactory system of a solitary and a eusocial bee species. Journal of Comparative Neurology, 2013, 521, 2742-2755.	1.6	40
46	Blue colour preference in honeybees distracts visual attention for learning closed shapes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 817-827.	1.6	64
47	Sex and Caste-Specific Variation in Compound Eye Morphology of Five Honeybee Species. PLoS ONE, 2013, 8, e57702.	2.5	80
48	Visual attention in a complex search task differs between honeybees and bumblebees. Journal of Experimental Biology, 2012, 215, 2515-2523.	1.7	71
49	Floral visual signal increases reproductive success in a sexually deceptive orchid. Arthropod-Plant Interactions, 2012, 6, 671-681.	1.1	23
50	Molecular and biochemical characterization of the major royal jelly protein in bumblebees suggest a non-nutritive function. Insect Biochemistry and Molecular Biology, 2012, 42, 647-654.	2.7	22
51	Integrating past and present studies on Ophrys pollination - a comment on Bradshaw et al Botanical Journal of the Linnean Society, 2011, 165, 329-335.	1.6	48
52	Bees use three-dimensional information to improve target detection. Die Naturwissenschaften, 2010, 97, 229-233.	1.6	41
53	Visual discrimination between two sexually deceptive Ophrys species by a bee pollinator. Arthropod-Plant Interactions, 2010, 4, 141-148.	1.1	24
54	Why sexually deceptive orchids have colored flowers. Communicative and Integrative Biology, 2010, 3, 139-141.	1.4	28

JOHANNES SPAETHE

#	Article	IF	CITATIONS
55	Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. Journal of Experimental Biology, 2009, 212, 1365-1370.	1.7	86
56	Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 617-627.	1.6	190
57	Turning blue and ultraviolet: sex-specific colour change during the mating season in the Balkan moor frog. Journal of Zoology, 2008, 276, 229-236.	1.7	39
58	Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Functional Ecology, 2007, 21, 1130-1136.	3.6	103
59	Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Die Naturwissenschaften, 2007, 94, 733-739.	1.6	152
60	Visual search and the importance of time in complex decision making by bees. Arthropod-Plant Interactions, 2007, 1, 37-44.	1.1	47
61	Beyond 9-ODA: SEX Pheromone Communication in the European Honey Bee Apis mellifera L Journal of Chemical Ecology, 2006, 32, 657-667.	1.8	73
62	Do honeybees detect colour targets using serial or parallel visual search?. Journal of Experimental Biology, 2006, 209, 987-993.	1.7	80
63	Molecular characterization and expression of the UV opsin in bumblebees:three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. Journal of Experimental Biology, 2005, 208, 2347-2361.	1.7	99
64	Honeybee Odometry: Performance in Varying Natural Terrain. PLoS Biology, 2004, 2, e211.	5.6	126
65	Early Duplication and Functional Diversification of the Opsin Gene Family in Insects. Molecular Biology and Evolution, 2004, 21, 1583-1594.	8.9	65
66	Interindividual variation of eye optics and single object resolution in bumblebees. Journal of Experimental Biology, 2003, 206, 3447-3453.	1.7	194
67	Size variation and foraging rate in bumblebees (Bombus terrestris). Insectes Sociaux, 2002, 49, 142-146.	1.2	199
68	Visual constraints in foraging bumblebees: Flower size and color affect search time and flight behavior. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3898-3903.	7.1	443
69	Honeybees (Apis mellifera)Âexhibit flexible visual search strategies for vertical targets presented at various heights. F1000Research, 0, 3, 174.	1.6	2