
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2746297/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Reviews Molecular Cell Biology, 2008, 9, 139-150.	16.1	2,820
2	Programmed cell death induced by ceramide. Science, 1993, 259, 1769-1771.	6.0	1,735
3	Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology, 2018, 19, 175-191.	16.1	1,197
4	The Ceramide-centric Universe of Lipid-mediated Cell Regulation: Stress Encounters of the Lipid Kind. Journal of Biological Chemistry, 2002, 277, 25847-25850.	1.6	803
5	An Overview of Sphingolipid Metabolism: From Synthesis to Breakdown. Advances in Experimental Medicine and Biology, 2010, 688, 1-23.	0.8	786
6	Many Ceramides. Journal of Biological Chemistry, 2011, 286, 27855-27862.	1.6	481
7	Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochemical Journal, 2012, 441, 789-802.	1.7	424
8	Role for Ceramide in Cell Cycle Arrest. Journal of Biological Chemistry, 1995, 270, 2047-2052.	1.6	415
9	Role of Ceramide in Cellular Senescence. Journal of Biological Chemistry, 1995, 270, 30701-30708.	1.6	415
10	Sphingolipid Metabolism Cooperates with BAK and BAX to Promote the Mitochondrial Pathway of Apoptosis. Cell, 2012, 148, 988-1000.	13.5	377
11	Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 424-434.	1.2	342
12	Thioredoxin Peroxidase Is a Novel Inhibitor of Apoptosis with a Mechanism Distinct from That of Bcl-2. Journal of Biological Chemistry, 1997, 272, 30615-30618.	1.6	339
13	Glutathione Regulation of Neutral Sphingomyelinase in Tumor Necrosis Factor-α-induced Cell Death. Journal of Biological Chemistry, 1998, 273, 11313-11320.	1.6	317
14	The sphingosine kinase 1/sphingosineâ€1â€phosphate pathway mediates COXâ€2 induction and PGE 2 production in response to TNFâ€Î±. FASEB Journal, 2003, 17, 1411-1421.	0.2	313
15	De Novo Ceramide Regulates the Alternative Splicing of Caspase 9 and Bcl-x in A549 Lung Adenocarcinoma Cells. Journal of Biological Chemistry, 2002, 277, 12587-12595.	1.6	299
16	Involvement of Yeast Sphingolipids in the Heat Stress Response of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1997, 272, 32566-32572.	1.6	281
17	Inhibition of Tumor Necrosis Factor-induced Cell Death in MCF7 by a Novel Inhibitor of Neutral Sphingomyelinase. Journal of Biological Chemistry, 2002, 277, 41128-41139.	1.6	277
18	PKC-dependent Activation of Sphingosine Kinase 1 and Translocation to the Plasma Membrane. Journal of Biological Chemistry, 2002, 277, 35257-35262.	1.6	274

#	Article	IF	CITATIONS
19	A house divided: Ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 2027-2036.	1.4	264
20	Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB Journal, 2001, 15, 2669-2679.	0.2	248
21	Role for sphingosine kinase 1 in colon carcinogenesis. FASEB Journal, 2009, 23, 405-414.	0.2	241
22	Ceramide Inactivates Cellular Protein Kinase Cα. Journal of Biological Chemistry, 1996, 271, 13169-13174.	1.6	239
23	Regulation of protein kinase C and role in cancer biology. Cancer and Metastasis Reviews, 1994, 13, 411-431.	2.7	234
24	Ceramide: A stress signal and mediator of growth suppression and apoptosis. Journal of Cellular Biochemistry, 1995, 58, 191-198.	1.2	229
25	Cytokine Response Modifier A (CrmA) Inhibits Ceramide Formation in Response to Tumor Necrosis Factor (TNF)-1±: CrmA and Bcl-2 Target Distinct Components in the Apoptotic Pathway. Journal of Experimental Medicine, 1997, 185, 481-490.	4.2	212
26	prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochemical Journal, 1996, 316, 25-28.	1.7	206
27	Sphingosine kinase 1 is upâ€regulated in colon carcinogenesis. FASEB Journal, 2006, 20, 386-388.	0.2	204
28	Defects in Cell Growth Regulation by C18:0-Ceramide and Longevity Assurance Gene 1 in Human Head and Neck Squamous Cell Carcinomas. Journal of Biological Chemistry, 2004, 279, 44311-44319.	1.6	196
29	Biochemical Mechanisms of the Generation of Endogenous Long Chain Ceramide in Response to Exogenous Short Chain Ceramide in the A549 Human Lung Adenocarcinoma Cell Line. Journal of Biological Chemistry, 2002, 277, 12960-12969.	1.6	193
30	Alterations of Ceramide/Sphingosine 1-Phosphate Rheostat Involved in the Regulation of Resistance to Imatinib-induced Apoptosis in K562 Human Chronic Myeloid Leukemia Cells*. Journal of Biological Chemistry, 2007, 282, 10922-10934.	1.6	193
31	Ceramide: an endogenous regulator of apoptosis and growth suppresion. Trends in Immunology, 1995, 16, 294-297.	7.5	187
32	A role for sphingosine kinase 1 in dextran sulfate sodiumâ€induced colitis. FASEB Journal, 2009, 23, 143-152.	0.2	173
33	Cloning of an Alkaline Ceramidase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2000, 275, 6876-6884.	1.6	165
34	Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1682, 48-55.	1.2	164
35	Immunohistochemical Distribution of Sphingosine Kinase 1 in Normal and Tumor Lung Tissue. Journal of Histochemistry and Cytochemistry, 2005, 53, 1159-1166.	1.3	164
36	Ceramide and Apoptosis: Exploring the Enigmatic Connections between Sphingolipid Metabolism and Programmed Cell Death. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 340-363.	0.9	164

#	Article	IF	CITATIONS
37	Ceramide Is Metabolized to Acylceramide and Stored in Lipid Droplets. Cell Metabolism, 2017, 25, 686-697.	7.2	163
38	Activation of sphingosineâ€1â€phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB Journal, 2007, 21, 1503-1514.	0.2	156
39	Involvement of Dihydroceramide Desaturase in Cell Cycle Progression in Human Neuroblastoma Cells. Journal of Biological Chemistry, 2007, 282, 16718-16728.	1.6	153
40	Expression of Neutral Sphingomyelinase Identifies a Distinct Pool of Sphingomyelin Involved in Apoptosis. Journal of Biological Chemistry, 1997, 272, 9609-9612.	1.6	149
41	Identification and Characterization of Saccharomyces cerevisiae Dihydrosphingosine-1-phosphate Phosphatase. Journal of Biological Chemistry, 1997, 272, 28690-28694.	1.6	147
42	Sphingosine kinase: Role in regulation of bioactive sphingolipid mediators in inflammation. Biochimie, 2010, 92, 707-715.	1.3	146
43	Cloning and Characterization of a Novel Human Alkaline Ceramidase. Journal of Biological Chemistry, 2001, 276, 26577-26588.	1.6	145
44	Role of Human Sphingosine-1-phosphate Phosphatase 1 in the Regulation of Intra- and Extracellular Sphingosine-1-phosphate Levels and Cell Viability. Journal of Biological Chemistry, 2003, 278, 34541-34547.	1.6	144
45	Loss of sphingosine kinaseâ€1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. FASEB Journal, 2006, 20, 482-484.	0.2	143
46	Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Advances in Enzyme Regulation, 2002, 42, 113-129.	2.9	142
47	Role for Mammalian Neutral Sphingomyelinase 2 in Confluence-induced Growth Arrest of MCF7 Cells. Journal of Biological Chemistry, 2004, 279, 25101-25111.	1.6	139
48	Bioactive sphingolipids in the modulation of the inflammatory response. , 2006, 112, 171-183.		138
49	A Deficiency of Ceramide Biosynthesis Causes Cerebellar Purkinje Cell Neurodegeneration and Lipofuscin Accumulation. PLoS Genetics, 2011, 7, e1002063.	1.5	137
50	Cloning and Characterization of a Saccharomyces cerevisiae Alkaline Ceramidase with Specificity for Dihydroceramide. Journal of Biological Chemistry, 2000, 275, 31369-31378.	1.6	134
51	A mitochondrial pool of sphingomyelin is involved in TNFα-induced Bax translocation to mitochondria. Biochemical Journal, 2005, 386, 445-451.	1.7	133
52	JNK3 Signaling Pathway Activates Ceramide Synthase Leading to Mitochondrial Dysfunction. Journal of Biological Chemistry, 2007, 282, 25940-25949.	1.6	132
53	The Mechanism of Membrane Targeting of Human Sphingosine Kinase 1. Journal of Biological Chemistry, 2005, 280, 43030-43038.	1.6	130
54	Cystic Fibrosis Transmembrane Regulator Regulates Uptake of Sphingoid Base Phosphates and Lysophosphatidic Acid. Journal of Biological Chemistry, 2001, 276, 35258-35264.	1.6	129

#	Article	lF	CITATIONS
55	The Coordination of Prostaglandin E2 Production by Sphingosine-1-phosphate and Ceramide-1-phosphate. Molecular Pharmacology, 2005, 68, 330-335.	1.0	129
56	Sphingosine Kinase 1 (SPHK1) Is Induced by Transforming Growth Factor-Î ² and Mediates TIMP-1 Up-regulation. Journal of Biological Chemistry, 2004, 279, 53994-54001.	1.6	128
57	Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. FASEB Journal, 2006, 20, 1813-1825.	0.2	128
58	Sphingosine Kinase 1 Is Up-regulated during Hypoxia in U87MG Clioma Cells. Journal of Biological Chemistry, 2008, 283, 3365-3375.	1.6	127
59	Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1â€phosphate signalling to regulate tumour metastasis. EMBO Molecular Medicine, 2012, 4, 761-775.	3.3	127
60	Role of sphingolipids in senescence: implication in aging and age-related diseases. Journal of Clinical Investigation, 2018, 128, 2702-2712.	3.9	125
61	Down-regulation of Sphingosine Kinase-1 by DNA Damage. Journal of Biological Chemistry, 2004, 279, 20546-20554.	1.6	123
62	The Development and Maintenance of Paclitaxel-induced Neuropathic Pain Require Activation of the Sphingosine 1-Phosphate Receptor Subtype 1. Journal of Biological Chemistry, 2014, 289, 21082-21097.	1.6	123
63	Sphingomyelinases in cell regulation. Seminars in Cell and Developmental Biology, 1997, 8, 311-322.	2.3	120
64	Ceramide Inhibits Phospholipase D in a Cell-free System. Journal of Biological Chemistry, 1996, 271, 24800-24805.	1.6	118
65	Rapid Shortening of Telomere Length in Response to Ceramide Involves the Inhibition of Telomere Binding Activity of Nuclear Glyceraldehyde-3-phosphate Dehydrogenase. Journal of Biological Chemistry, 2004, 279, 6152-6162.	1.6	117
66	Yeast sphingolipids: Recent developments in understanding biosynthesis, regulation, and function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 421-431.	1.2	116
67	Disruption of ceramide synthesis by CerS2 down-regulation leads to autophagy and the unfolded protein response. Biochemical Journal, 2009, 424, 273-283.	1.7	115
68	Necessary Role for the Lag1p Motif in (Dihydro)ceramide Synthase Activity. Journal of Biological Chemistry, 2006, 281, 33931-33938.	1.6	112
69	The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses. Biochemical Journal, 1999, 342, 667-675.	1.7	110
70	Sphingosine Kinase 1 (SK1) Is Recruited to Nascent Phagosomes in Human Macrophages: Inhibition of SK1 Translocation by Mycobacterium tuberculosis. Journal of Immunology, 2005, 174, 3551-3561.	0.4	110
71	Yeast sphingolipids: metabolism and biology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1585, 163-171.	1.2	109
72	The BCL-2 Protein BAK Is Required for Long-chain Ceramide Generation during Apoptosis. Journal of Biological Chemistry, 2010, 285, 11818-11826.	1.6	109

#	Article	IF	CITATIONS
73	Sphingolipids Signal Heat Stress-induced Ubiquitin-dependent Proteolysis. Journal of Biological Chemistry, 2000, 275, 17229-17232.	1.6	108
74	Role of Ceramide in Mediating the Inhibition of Telomerase Activity in A549 Human Lung Adenocarcinoma Cells. Journal of Biological Chemistry, 2001, 276, 24901-24910.	1.6	106
75	Positively Charged Ceramide Is a Potent Inducer of Mitochondrial Permeabilization. Journal of Biological Chemistry, 2005, 280, 16096-16105.	1.6	104
76	Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. Journal of Lipid Research, 2011, 52, 68-77.	2.0	104
77	Identification of Dihydroceramide Desaturase as a Direct in Vitro Target for Fenretinide. Journal of Biological Chemistry, 2011, 286, 24754-24764.	1.6	104
78	Selective Involvement of Ceramide in Cytokine-induced Apoptosis. Journal of Biological Chemistry, 1997, 272, 16474-16481.	1.6	103
79	Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: Review of sphingosine kinase inhibitors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 157-166.	1.2	102
80	The functional effects of acid ceramidase over-expression in prostate cancer progression and resistance to chemotherapy. Cancer Biology and Therapy, 2007, 6, 1451-1456.	1.5	101
81	Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A. Blood, 2011, 117, 5941-5952.	0.6	101
82	Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1174-1188.	1.2	100
83	Sphingosine-1-phosphate receptor 2. FEBS Journal, 2013, 280, 6354-6366.	2.2	99
84	AMPK inhibitor Compound C stimulates ceramide production and promotes Bax redistribution and apoptosis in MCF7 breast carcinoma cells. Journal of Lipid Research, 2009, 50, 2389-2397.	2.0	97
85	Molecular Mechanisms of Ceramide-mediated Telomerase Inhibition in the A549 Human Lung Adenocarcinoma Cell Line. Journal of Biological Chemistry, 2001, 276, 32506-32514.	1.6	92
86	Phytosphingosine as a Specific Inhibitor of Growth and Nutrient Import in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2001, 276, 35614-35621.	1.6	91
87	Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins and Other Lipid Mediators, 2008, 85, 107-114.	1.0	91
88	Sphingolipids in mitochondria. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 56-68.	1.2	91
89	Hyaluronan Constitutively Regulates Activation of COX-2-mediated Cell Survival Activity in Intestinal Epithelial and Colon Carcinoma Cells. Journal of Biological Chemistry, 2008, 283, 14335-14344.	1.6	90
90	Novel Pathway of Ceramide Production in Mitochondria. Journal of Biological Chemistry, 2011, 286, 25352-25362.	1.6	89

#	Article	IF	CITATIONS
91	Sphingosine Kinase 1 in Cancer. Advances in Cancer Research, 2013, 117, 201-235.	1.9	89
92	Role of sphingosine kinaseâ€1 in paracrine/transcellular angiogenesis and lymphangiogenesis in vitro. FASEB Journal, 2010, 24, 2727-2738.	0.2	88
93	Potent Antitumor Activity of a Novel Cationic Pyridinium-Ceramide Alone or in Combination with Gemcitabine against Human Head and Neck Squamous Cell Carcinomas in Vitro and in Vivo. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1188-1199.	1.3	86
94	Ceramide Synthase-dependent Ceramide Generation and Programmed Cell Death. Journal of Biological Chemistry, 2011, 286, 15929-15942.	1.6	85
95	Colgi Fragmentation Is Associated with Ceramide-induced Cellular Effects. Molecular Biology of the Cell, 2005, 16, 1555-1567.	0.9	83
96	Genetic Sphingosine Kinase 1 Deficiency Significantly Decreases Synovial Inflammation and Joint Erosions in Murine TNF-α–Induced Arthritis. Journal of Immunology, 2010, 185, 2570-2579.	0.4	83
97	Tumor Necrosis Factor Induces the Loss of Sphingosine Kinase-1 by a Cathepsin B-dependent Mechanism. Journal of Biological Chemistry, 2005, 280, 17196-17202.	1.6	82
98	Insulin-like Growth Factors Mediate Heterotrimeric G Protein-dependent ERK1/2 Activation by Transactivating Sphingosine 1-Phosphate Receptors. Journal of Biological Chemistry, 2006, 281, 31399-31407.	1.6	82
99	Structure of human nSMase2 reveals an interdomain allosteric activation mechanism for ceramide generation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5549-E5558.	3.3	82
100	Isc1 regulates sphingolipid metabolism in yeast mitochondria. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2849-2861.	1.4	81
101	Upregulation of the Human Alkaline Ceramidase 1 and Acid Ceramidase Mediates Calcium-Induced Differentiation of Epidermal Keratinocytes. Journal of Investigative Dermatology, 2008, 128, 389-397.	0.3	76
102	Alkaline Ceramidase 3 (ACER3) Hydrolyzes Unsaturated Long-chain Ceramides, and Its Down-regulation Inhibits Both Cell Proliferation and Apoptosis. Journal of Biological Chemistry, 2010, 285, 7964-7976.	1.6	75
103	Developmentally Regulated Ceramide Synthase 6 Increases Mitochondrial Ca2+ Loading Capacity and Promotes Apoptosis. Journal of Biological Chemistry, 2011, 286, 4644-4658.	1.6	73
104	Inhibition of Caspases Inhibits the Release of Apoptotic Bodies: Bcl-2 Inhibits the Initiation of Formation of Apoptotic Bodies in Chemotherapeutic Agent-induced Apoptosis. Journal of Cell Biology, 1999, 145, 99-108.	2.3	71
105	Cloning and Characterization of a Mouse Endoplasmic Reticulum Alkaline Ceramidase. Journal of Biological Chemistry, 2003, 278, 31184-31191.	1.6	71
106	Ceramide Generated by Sphingomyelin Hydrolysis and the Salvage Pathway Is Involved in Hypoxia/Reoxygenation-induced Bax Redistribution to Mitochondria in NT-2 Cells. Journal of Biological Chemistry, 2008, 283, 26509-26517.	1.6	71
107	Dihydroceramide-based Response to Hypoxia. Journal of Biological Chemistry, 2011, 286, 38069-38078.	1.6	71
108	A novel role for protein kinase Cδâ€mediated phosphorylation of acid sphingomyelinase in UV lightâ€induced mitochondrial injury. FASEB Journal, 2008, 22, 183-193.	0.2	70

#	Article	IF	CITATIONS
109	A Role of Sphingosine Kinase 1 in Head and Neck Carcinogenesis. Cancer Prevention Research, 2011, 4, 454-462.	0.7	68
110	Molecular Targeting of Acid Ceramidase: Implications to Cancer Therapy. Current Drug Targets, 2008, 9, 653-661.	1.0	67
111	Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways. Journal of Biological Chemistry, 2018, 293, 16724-16740.	1.6	67
112	Cell-cycle-dependent changes in ceramide levels preceding retinoblastoma protein dephosphorylation in G2/M. Biochemical Journal, 1998, 334, 457-461.	1.7	66
113	Differential Effects of Ceramide and Sphingosine 1-Phosphate on ERM Phosphorylation. Journal of Biological Chemistry, 2010, 285, 32476-32485.	1.6	66
114	Yeast sphingolipid metabolism: clues and connections. Biochemistry and Cell Biology, 2004, 82, 45-61.	0.9	63
115	Phorbol myristate acetate-dependent association of protein kinase Cα with phospholipase D1 in intact cells. Lipids and Lipid Metabolism, 1997, 1347, 199-204.	2.6	60
116	Acid Ceramidase but Not Acid Sphingomyelinase Is Required for Tumor Necrosis Factor-α-induced PGE2 Production. Journal of Biological Chemistry, 2006, 281, 24695-24703.	1.6	60
117	Phospholipase D in cellular senescence. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1439, 291-298.	1.2	59
118	Differentiation-associated expression of ceramidase isoforms in cultured keratinocytes and epidermis. Journal of Lipid Research, 2006, 47, 1063-1070.	2.0	59
119	Intracellular sphingosine kinase 2â€derived sphingosineâ€1â€phosphate mediates epidermal growth factorâ€induced ezrinâ€radixinâ€moesin phosphorylation and cancer cell invasion. FASEB Journal, 2015, 29, 4654-4669.	0.2	59
120	Sphingosine-1-phosphate Signaling Promotes Critical Migratory Events in Vasculogenesis. Journal of Biological Chemistry, 2004, 279, 50580-50590.	1.6	58
121	Cationic long-chain ceramide LCL-30 induces cell death by mitochondrial targeting in SW403 cells. Molecular Cancer Therapeutics, 2006, 5, 1520-1529.	1.9	58
122	ISC1-dependent Metabolic Adaptation Reveals an Indispensable Role for Mitochondria in Induction of Nuclear Genes during the Diauxic Shift in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284, 10818-10830.	1.6	58
123	Mechanisms of Ceramide-Mediated Apoptosis. Advances in Experimental Medicine and Biology, 1997, 407, 145-149.	0.8	58
124	Modulation of Transforming Growth Factor-β (TGF-β) Signaling by Endogenous Sphingolipid Mediators. Journal of Biological Chemistry, 2003, 278, 9276-9282.	1.6	57
125	Ceramide: A Novel Lipid Mediator of Apoptosis. Advances in Pharmacology, 1997, 41, 133-154.	1.2	56
126	Sphingosine 1-phosphate induces filopodia formation through S1PR2 activation of ERM proteins. Biochemical Journal, 2013, 449, 661-672.	1.7	56

#	Article	IF	CITATIONS
127	Role of neutral ceramidase in colon cancer. FASEB Journal, 2016, 30, 4159-4171.	0.2	56
128	Effects of Sphingosine and Other Sphingolipids on Protein Kinase C. Methods in Enzymology, 2000, 312, 361-373.	0.4	55
129	Protein Kinase C-induced Activation of a Ceramide/Protein Phosphatase 1 Pathway Leading to Dephosphorylation of p38 MAPK. Journal of Biological Chemistry, 2006, 281, 36793-36802.	1.6	55
130	De novo N-palmitoylsphingosine synthesis is the major biochemical mechanism of ceramide accumulation following p53 up-regulation. Prostaglandins and Other Lipid Mediators, 2008, 86, 41-48.	1.0	55
131	Tumor Necrosis Factor-α (TNFα)-induced Ceramide Generation via Ceramide Synthases Regulates Loss of Focal Adhesion Kinase (FAK) and Programmed Cell Death. Journal of Biological Chemistry, 2015, 290, 25356-25373.	1.6	55
132	Advances in determining signaling mechanisms of ceramide and role in disease. Journal of Lipid Research, 2019, 60, 913-918.	2.0	55
133	Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death and Differentiation, 2018, 25, 841-856.	5.0	54
134	Ceramidases in the Regulation of Ceramide Levels and Function. Sub-Cellular Biochemistry, 2004, 36, 187-205.	1.0	53
135	Functional Dichotomy of Protein Kinase C (PKC) in Tumor Necrosis Factor-α (TNF-α) Signal Transduction in L929 Cells. Journal of Biological Chemistry, 2000, 275, 29290-29298.	1.6	52
136	Tailoring structure–function and targeting properties of ceramides by site-specific cationization. Bioorganic and Medicinal Chemistry, 2006, 14, 7083-7104.	1.4	52
137	The Insulin-like Growth Factor Type 1 and Insulin-like Growth Factor Type 2/Mannose-6-phosphate Receptors Independently Regulate ERK1/2 Activity in HEK293 Cells. Journal of Biological Chemistry, 2007, 282, 26150-26157.	1.6	52
138	Dihydrosphingosine 1â€phosphate stimulates MMP1 gene expression via activation of ERK1/2â€Ets1 pathway in human fibroblasts. FASEB Journal, 2006, 20, 184-186.	0.2	51
139	Loss of neutral ceramidase increases inflammation in a mouse model of inflammatory bowel disease. Prostaglandins and Other Lipid Mediators, 2012, 99, 124-130.	1.0	51
140	Acid β-Glucosidase 1 Counteracts p38δ-dependent Induction of Interleukin-6. Journal of Biological Chemistry, 2009, 284, 12979-12988.	1.6	50
141	Substrate Specificity, Membrane Topology, and Activity Regulation of Human Alkaline Ceramidase 2 (ACER2). Journal of Biological Chemistry, 2010, 285, 8995-9007.	1.6	49
142	Sphingolipid regulation of ezrin, radixin, and moesin proteins family: Implications for cell dynamics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 727-737.	1.2	49
143	Structural Basis for Ceramide Recognition and Hydrolysis by Human Neutral Ceramidase. Structure, 2015, 23, 1482-1491.	1.6	49
144	Inhibition of growth and telomerase activity by novel cationic ceramide analogs with high solubility in human head and neck squamous cell carcinoma cells. Otolaryngology - Head and Neck Surgery, 2005, 132, 55-62.	1.1	48

#	Article	IF	CITATIONS
145	CERT depletion predicts chemotherapy benefit and mediates cytotoxic and polyploidâ€specific cancer cell death through autophagy induction. Journal of Pathology, 2012, 226, 482-494.	2.1	48
146	Involvement of Acid β-Glucosidase 1 in the Salvage Pathway of Ceramide Formation. Journal of Biological Chemistry, 2009, 284, 12972-12978.	1.6	46
147	Alkaline Ceramidase 2 (ACER2) and Its Product Dihydrosphingosine Mediate the Cytotoxicity of N-(4-Hydroxyphenyl)retinamide in Tumor Cells. Journal of Biological Chemistry, 2010, 285, 29078-29090.	1.6	46
148	Sphingolipids in neutrophil function and inflammatory responses: Mechanisms and implications for intestinal immunity and inflammation in ulcerative colitis. Advances in Biological Regulation, 2017, 63, 140-155.	1.4	46
149	Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain. PLoS Genetics, 2015, 11, e1005591.	1.5	46
150	A novel role of sphingosine kinaseâ€1 in the invasion and angiogenesis of VHL mutant clear cell renal cell carcinoma. FASEB Journal, 2015, 29, 2803-2813.	0.2	45
151	Sphingolipids in the DNA damage response. Advances in Biological Regulation, 2015, 58, 38-52.	1.4	44
152	Role of alkaline ceramidases in the generation of sphingosine and its phosphate in erythrocytes. FASEB Journal, 2010, 24, 2507-2515.	0.2	43
153	Mitochondrially targeted ceramides preferentially promote autophagy, retard cell growth, and induce apoptosis. Journal of Lipid Research, 2011, 52, 278-288.	2.0	43
154	Sphingosine Kinase 1 Is Regulated by Peroxisome Proliferator-activated Receptor α in Response to Free Fatty Acids and Is Essential for Skeletal Muscle Interleukin-6 Production and Signaling in Diet-induced Obesity. Journal of Biological Chemistry, 2013, 288, 22193-22206.	1.6	43
155	Ceramide, Stress, and a "LAG" in Aging. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 27pe-27.	0.9	43
156	Oxidized LDL immune complexes induce release of sphingosine kinase in human U937 monocytic cells. Prostaglandins and Other Lipid Mediators, 2006, 79, 126-140.	1.0	42
157	Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 342-351.	2.3	39
158	Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response. Oncotarget, 2016, 7, 18440-18457.	0.8	39
159	The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses. Biochemical Journal, 1999, 342, 667.	1.7	39
160	Involvement of endogenous ceramide in the inhibition of telomerase activity and induction of morphologic differentiation in response to all-trans-retinoic acid in human neuroblastoma cells. Archives of Biochemistry and Biophysics, 2003, 419, 110-119.	1.4	37
161	Accumulation of Long-Chain Glycosphingolipids during Aging Is Prevented by Caloric Restriction. PLoS ONE, 2011, 6, e20411.	1.1	37
162	Long-chain Ceramide Is a Potent Inhibitor of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 2008, 283, 24707-24717.	1.6	36

#	Article	IF	CITATIONS
163	Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. Journal of Lipid Research, 2017, 58, 1439-1452.	2.0	35
164	Bcl-2 acts upstream of the PARP protease and prevents its activation. Cell Death and Differentiation, 1997, 4, 29-33.	5.0	34
165	Alkaline ceramidase 2 regulates \hat{l}^21 integrin maturation and cell adhesion. FASEB Journal, 2009, 23, 656-666.	0.2	34
166	Oncogenic K-Ras Regulates Bioactive Sphingolipids in a Sphingosine Kinase 1-dependent Manner. Journal of Biological Chemistry, 2012, 287, 31794-31803.	1.6	34
167	Inhibition of Sphingosine Kinase-2 in a Murine Model of Lupus Nephritis. PLoS ONE, 2013, 8, e53521.	1.1	34
168	Sphingosine Kinase 1 Regulates Tumor Necrosis Factor-mediated RANTES Induction through p38 Mitogen-activated Protein Kinase but Independently of Nuclear Factor ήB Activation*. Journal of Biological Chemistry, 2013, 288, 27667-27679.	1.6	33
169	Insulin Regulates Protein Kinase CβII Expression through Enhanced Exon Inclusion in L6 Skeletal Muscle Cells. Journal of Biological Chemistry, 1998, 273, 910-916.	1.6	32
170	Regulation of membrane release in apoptosis. Biochemical Journal, 1998, 334, 479-485.	1.7	32
171	The Localization and Activity of Sphingosine Kinase 1 Are Coordinately Regulated with Actin Cytoskeletal Dynamics in Macrophages*. Journal of Biological Chemistry, 2007, 282, 23147-23162.	1.6	32
172	Sphingosine kinase-1 is cleaved by cathepsin B in vitro: Identification of the initial cleavage sites for the protease. FEBS Letters, 2006, 580, 6047-6054.	1.3	31
173	Combination of C17 Sphingoid Base Homologues and Mass Spectrometry Analysis as a New Approach to Study Sphingolipid Metabolism. Methods in Enzymology, 2007, 434, 233-241.	0.4	31
174	Sphingosine-1-phosphate acting via the S1P1 receptor is a downstream signaling pathway in ceramide-induced hyperalgesia. Neuroscience Letters, 2011, 499, 4-8.	1.0	31
175	p53 and regulation of bioactive sphingolipids. Advances in Enzyme Regulation, 2011, 51, 219-228.	2.9	31
176	Impact of sphingosine kinase 2 deficiency on the development of TNF-alpha-induced inflammatory arthritis. Rheumatology International, 2013, 33, 2677-2681.	1.5	31
177	Epidermal growth factorâ€induced cellular invasion requires sphingosineâ€1â€phosphate/sphingosineâ€1â€phosphate 2 receptorâ€mediated ezrin activation. FASEB Journal, 2013, 27, 3155-3166.	0.2	31
178	Loss of neutral ceramidase protects cells from nutrient- and energy -deprivation-induced cell death. Biochemical Journal, 2016, 473, 743-755.	1.7	31
179	Molecular mechanisms of regulation of sphingosine kinase 1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1413-1422.	1.2	31
180	Alkaline ceramidase 2 is essential for the homeostasis of plasma sphingoid bases and their phosphates. FASEB Journal, 2018, 32, 3058-3069.	0.2	31

#	Article	IF	CITATIONS
181	Regulation of CC Ligand 5/RANTES by Acid Sphingomyelinase and Acid Ceramidase. Journal of Biological Chemistry, 2011, 286, 13292-13303.	1.6	30
182	Sphingosine-1-phosphate metabolism: A structural perspective. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 298-313.	2.3	30
183	Novel sphingosine kinase-1 inhibitor, LCL351, reduces immune responses in murine DSS-induced colitis. Prostaglandins and Other Lipid Mediators, 2017, 130, 47-56.	1.0	30
184	Modulation of total Akt kinase by increased expression of a single isoform: Requirement of the sphingosine-1-phosphate receptor, Edg3/S1P3, for the VEGF-dependent expression of Akt3 in primary endothelial cells. Experimental Cell Research, 2006, 312, 1164-1173.	1.2	29
185	Sphingosine 1-Phosphate and Sphingosine Kinase Are Involved in a Novel Signaling Pathway Leading to Acrosomal Exocytosis. Journal of Biological Chemistry, 2010, 285, 16302-16314.	1.6	28
186	Intraplantarâ€injected ceramide in rats induces hyperalgesia through an NFâ€îºB―and p38 kinaseâ€dependent cyclooxygenase 2/prostaglandin E ₂ pathway. FASEB Journal, 2011, 25, 2782-2791.	0.2	28
187	Regulation of the Sphingosine Kinase/Sphingosine 1-Phosphate Pathway. Handbook of Experimental Pharmacology, 2013, , 275-303.	0.9	28
188	An intrinsic lipid-binding interface controls sphingosine kinase 1 function. Journal of Lipid Research, 2018, 59, 462-474.	2.0	28
189	AKT as a key target for growth promoting functions of neutral ceramidase in colon cancer cells. Oncogene, 2018, 37, 3852-3863.	2.6	27
190	A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis. FASEB Journal, 2018, 32, 130-142.	0.2	27
191	Ceramide launches an acute antiâ€adhesion proâ€migration cell signaling program in response to chemotherapy. FASEB Journal, 2020, 34, 7610-7630.	0.2	27
192	Decreased ceramide underlies mitochondrial dysfunction in Charcotâ€Marieâ€Tooth 2F. FASEB Journal, 2018, 32, 1716-1728.	0.2	26
193	CRASP55 regulates intraâ€Golgi localization of glycosylation enzymes to control glycosphingolipid biosynthesis. EMBO Journal, 2021, 40, e107766.	3.5	26
194	Critical determinants of mitochondria-associated neutral sphingomyelinase (MA-nSMase) for mitochondrial localization. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 628-639.	1.1	24
195	Sphingosine Kinase 1 expression in peritoneal macrophages is required for colon carcinogenesis. Carcinogenesis, 2017, 38, 1218-1227.	1.3	24
196	GERIATRIC BIOSCIENCE: Signal Transduction in Cellular Senescence. Journal of the American Geriatrics Society, 1997, 45, 361-366.	1.3	23
197	Ceramide kinase regulates TNF-α-induced immune responses in human monocytic cells. Scientific Reports, 2021, 11, 8259.	1.6	23
198	TNFα-induced glutathione depletion lies downstream of cPLA2in L929 cells. FEBS Letters, 2001, 507, 151-156.	1.3	22

#	Article	IF	CITATIONS
199	Defining a Role for Acid Sphingomyelinase in the p38/Interleukin-6 Pathway. Journal of Biological Chemistry, 2014, 289, 22401-22412.	1.6	22
200	Loss of acid ceramidase in myeloid cells suppresses intestinal neutrophil recruitment. FASEB Journal, 2018, 32, 2339-2353.	0.2	22
201	Distinct Roles for Hematopoietic and Extra-Hematopoietic Sphingosine Kinase-1 in Inflammatory Bowel Disease. PLoS ONE, 2014, 9, e113998.	1.1	22
202	Identification of an acid sphingomyelinase ceramide kinase pathway in the regulation of the chemokine CCL5 [S]. Journal of Lipid Research, 2018, 59, 1219-1229.	2.0	20
203	Multiple actions of doxorubicin on the sphingolipid network revealed by flux analysis. Journal of Lipid Research, 2019, 60, 819-831.	2.0	20
204	Aging-related elevation of sphingoid bases shortens yeast chronological life span by compromising mitochondrial function. Oncotarget, 2016, 7, 21124-21144.	0.8	19
205	A novel role for DGATs in cancer. Advances in Biological Regulation, 2019, 72, 89-101.	1.4	19
206	Insulin-like Growth Factors Mediate Heterotrimeric G Protein-dependent ERK1/2 Activation by Transactivating Sphingosine 1-Phosphate Receptors. Journal of Biological Chemistry, 2006, 281, 31399-31407.	1.6	19
207	Phospholipase C and Protein Kinase C-β 2 Mediate Insulin-Like Growth Factor II-Dependent Sphingosine Kinase 1 Activation. Molecular Endocrinology, 2011, 25, 2144-2156.	3.7	18
208	Alkaline Ceramidase 1 Protects Mice from Premature Hair Loss by Maintaining the Homeostasis of Hair Follicle Stem Cells. Stem Cell Reports, 2017, 9, 1488-1500.	2.3	18
209	A role for caspaseâ€2 in sphingosine kinase 1 proteolysis in response to doxorubicin in breast cancer cells – implications for the <scp>CHK</scp> 1â€suppressed pathway. FEBS Open Bio, 2018, 8, 27-40.	1.0	18
210	Functions of neutral ceramidase in the Golgi apparatus. Journal of Lipid Research, 2018, 59, 2116-2125.	2.0	18
211	Bcl-xL interrupts oxidative activation of neutral sphingomyelinase. FEBS Letters, 2002, 530, 104-108.	1.3	17
212	Effect of sphingosine kinase 1 inhibition on blood pressure. FASEB Journal, 2013, 27, 656-664.	0.2	17
213	Probing de novo sphingolipid metabolism in mammalian cells utilizing mass spectrometry. Journal of Lipid Research, 2018, 59, 1046-1057.	2.0	17
214	Probing compartment-specific sphingolipids with targeted bacterial sphingomyelinases and ceramidases. Journal of Lipid Research, 2019, 60, 1841-1850.	2.0	17
215	Ceramide and the Regulation of Apoptosis and the Stress Response. Trends in Cardiovascular Medicine, 1996, 6, 158-162.	2.3	16
216	Activation of p38 Mitogen-Activated Protein Kinase in Gaucher's Disease. PLoS ONE, 2015, 10, e0136633.	1.1	16

#	Article	IF	CITATIONS
217	Sphingolipids In Vascular Biology. Advances in Experimental Medicine and Biology, 2002, 507, 439-444.	0.8	16
218	Co-ordinated activation of classical and novel PKC isoforms is required for PMA-induced mTORC1 activation. PLoS ONE, 2017, 12, e0184818.	1.1	15
219	Quantification of 3-ketodihydrosphingosine using HPLC-ESI-MS/MS to study SPT activity in yeast Saccharomyces cerevisiae. Journal of Lipid Research, 2018, 59, 162-170.	2.0	14
220	[34] Use of yeast as a model system for studies of sphingolipid metabolism and signaling. Methods in Enzymology, 2000, 311, 319-331.	0.4	13
221	[26] Yeast sphingosine-1-phosphate phosphatases: Assay, expression, deletion, purification, and cellular localization by GFP tagging. Methods in Enzymology, 2000, 311, 223-233.	0.4	13
222	Cell density-dependent reduction of dihydroceramide desaturase activity in neuroblastoma cells. Journal of Lipid Research, 2012, 53, 918-928.	2.0	13
223	Molecular Characterization of Rice OsLCB2a1 Gene and Functional Analysis of its Role in Insect Resistance. Frontiers in Plant Science, 2016, 7, 1789.	1.7	13
224	PKCα is required for Akt-mTORC1 activation in non-small cell lung carcinoma (NSCLC) with EGFR mutation. Oncogene, 2019, 38, 7311-7328.	2.6	13
225	Transcriptional Regulation of Sphingosine Kinase 1. Cells, 2020, 9, 2437.	1.8	13
226	Quantifying 1-deoxydihydroceramides and 1-deoxyceramides in mouse nervous system tissue. Prostaglandins and Other Lipid Mediators, 2019, 141, 40-48.	1.0	12
227	Tsc3 regulates SPT amino acid choice in Saccharomyces cerevisiae by promoting alanine in the sphingolipid pathway. Journal of Lipid Research, 2018, 59, 2126-2139.	2.0	11
228	Sustained PKCβII activity confers oncogenic properties in a phospholipase D―and mTORâ€dependent manner. FASEB Journal, 2014, 28, 495-505.	0.2	10
229	Oxidized graphene nanoparticles as a delivery system for the proâ€apoptotic sphingolipid C ₆ ceramide. Journal of Biomedical Materials Research - Part A, 2019, 107, 25-37.	2.1	10
230	CHK1 regulates NF-κB signaling upon DNA damage in p53- deficient cells and associated tumor-derived microvesicles. Oncotarget, 2016, 7, 18159-18170.	0.8	10
231	1-Deoxysphinganine initiates adaptive responses to serine and glycine starvation in cancer cells via proteolysis of sphingosine kinase. Journal of Lipid Research, 2022, 63, 100154.	2.0	10
232	A disrupted homologue of the human CLN3 or juvenile neuronal ceroid lipofuscinosis gene in Saccharomyces cerevisiae: a model to study Batten disease. Cellular and Molecular Neurobiology, 1999, 19, 671-680.	1.7	8
233	Neutral ceramidase deficiency protects against cisplatin-induced acute kidney injury. Journal of Lipid Research, 2022, 63, 100179.	2.0	8
234	Impact of Sphingosine Kinase on Inflammatory Pathways in Fibroblast-Like Synoviocytes. Inflammation and Allergy: Drug Targets, 2011, 10, 464-471.	1.8	7

#	Article	IF	CITATIONS
235	Maternal and fetal alkaline ceramidase 2 is required for placental vascular integrity in mice. FASEB Journal, 2020, 34, 15252-15268.	0.2	7
236	Sphingosine kinase 1 downregulation is required for adaptation to serine deprivation. FASEB Journal, 2021, 35, e21284.	0.2	7
237	Targeting sphingosine kinase 1 (SK1) enhances oncogene-induced senescence through ceramide synthase 2 (CerS2)-mediated generation of very-long-chain ceramides. Cell Death and Disease, 2021, 12, 27.	2.7	7
238	Delivery of long chain C ₁₆ and C ₂₄ ceramide in HeLa cells using oxidized graphene nanoribbons. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1141-1156.	1.6	6
239	Yeast Sphingolipid Phospholipase Gene ISC1 Regulates the Spindle Checkpoint by a CDC55 -Dependent Mechanism. Molecular and Cellular Biology, 2020, 40, .	1.1	6
240	The doxorubicinâ€induced cell motility network is under the control of the ceramideâ€activated protein phosphatase 1 alpha. FASEB Journal, 2021, 35, e21396.	0.2	6
241	Signal-Oriented Pathway Analyses Reveal a Signaling Complex as a Synthetic Lethal Target for p53 Mutations. Cancer Research, 2016, 76, 6785-6794.	0.4	3
242	Immunoprecipitation of Human Telomerase Reverse Transcriptase with Telomerase Activity. Analytical Biochemistry, 2001, 291, 166-169.	1.1	2
243	Ceramide, Aging and Cellular Senescence. Molecular Biology Intelligence Unit, 1997, , 61-75.	0.2	2
244	The Role of Ceramide in Cell Regulation. , 2010, , 1201-1211.		1
245	Colon Cancer: The Role of Sphingolipid Metabolic Enzymes. , 2015, , 141-159.		1
246	Loss of sphingosine kinase 1 increases lung metastases in the MMTV-PyMT mouse model of breast cancer. PLoS ONE, 2021, 16, e0252311.	1.1	1
247	Ceramidases: Regulators of Turnover of Ceramide and Ceramide-Mediated Responses. Molecular Biology Intelligence Unit, 2002, , 29-40.	0.2	1
248	Ceramide and Lipid Mediators in Apoptosis. , 0, , 88-105.		0
249	Dihydroceramide-based response to hypoxia Journal of Biological Chemistry, 2012, 287, 17425.	1.6	Ο
250	A Milk-Fat Based Diet Increases Metastasis in the MMTV-PyMT Mouse Model of Breast Cancer. Nutrients, 2021, 13, 2431.	1.7	0
251	Sphingolipid signaling in the regulation of vascular network assembly. FASEB Journal, 2007, 21, A35.	0.2	0
252	Dysregulation of mitochondrial sphingolipid metabolism after traumatic brain injury. FASEB Journal, 2012, 26, 565.3.	0.2	0

#	Article	IF	CITATIONS
253	Inhibition of chemotherapyâ€induced neuropathic pain with S1P receptor modulators. FASEB Journal, 2013, 27, 887.12.	0.2	0
254	The Role of Ceramide in the Cellular Stress Response. , 1996, , 183-192.		0
255	Sphingolipids in the Pathogenesis of Head and Neck and Lung Cancers: Translational Aspects for Therapy and Biomarker Development. , 2015, , 235-257.		Ο
256	Interaction of Ceramide Synthase with Long Chain Fatty Acylâ€CoA Synthase 5 Channels de novo Ceramide to Acylceramide Generation by Diacylglycerol Acyltransferase 2 on Lipid Droplets. FASEB Journal, 2015, 29, 568.21.	0.2	0
257	Sphingosine-1-Phosphate Receptor 3 (S1PR3) Promotes Myeloid Commitment of Human Hematopoietic and Leukemic Stem Cells. Blood, 2018, 132, 1329-1329.	0.6	0
258	Metabolism and Function of Sphingolipids in Saccharomyces Cerevisiae: Relevance to Cancer Research. , 2007, , 191-210.		0