Homan Kang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2745757/homan-kang-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,340 26 46 g-index

100 2,767 8.3 4.72 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
83	Fast and Durable Intraoperative Near-infrared Imaging of Ovarian Cancer Using Ultrabright Squaraine Fluorophores <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	4
82	Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps <i>Journal of Nanobiotechnology</i> , 2022 , 20, 130	9.4	3
81	Injectable Thermosensitive Hydrogels for a Sustained Release of Iron Nanochelators <i>Advanced Science</i> , 2022 , e2200872	13.6	3
80	Topical pH Sensing NIR Fluorophores for Intraoperative Imaging and Surgery of Disseminated Ovarian Cancer <i>Advanced Science</i> , 2022 , e2201416	13.6	2
79	Tumor-Associated Immune Cell Mediated Tumor Targeting Mechanism with NIR-II Fluorescence Imaging <i>Advanced Materials</i> , 2021 , e2106500	24	6
78	ZW800-PEG: A Renal Clearable Zwitterionic Near-Infrared Fluorophore for Potential Clinical Translation. <i>Angewandte Chemie</i> , 2021 , 133, 13966-13971	3.6	3
77	ZW800-PEG: A Renal Clearable Zwitterionic Near-Infrared Fluorophore for Potential Clinical Translation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13847-13852	16.4	10
76	Fluorescent nanodiamond - hyaluronate conjugates for target-specific molecular imaging. <i>RSC Advances</i> , 2021 , 11, 23073-23081	3.7	2
75	Template-Assisted Plasmonic Nanogap Shells for Highly Enhanced Detection of Cancer Biomarkers. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	5
74	Combating iron overload: a case for deferoxamine-based nanochelators. <i>Nanomedicine</i> , 2020 ,	5.6	7
73	Facile formulation of a long-wavelength cyanine for optical imaging in the second near-infrared window. <i>Biomaterials Science</i> , 2020 , 8, 4199-4205	7.4	7
72	Renal Clearable Theranostic Nanoplatforms for Gastrointestinal Stromal Tumors. <i>Advanced Materials</i> , 2020 , 32, e1905899	24	12
71	Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901223	10.1	129
70	Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. <i>Nano Research</i> , 2020 , 13, 3338-3346	10	17
69	Graphical and SERS dual-modal identifier for encoding OBOC library. <i>Sensors and Actuators B:</i> Chemical, 2020 , 303, 127211	8.5	5
68	Colony-stimulating factor 1 and its receptor are new potential therapeutic targets for allergic asthma. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2020 , 75, 357-369	9.3	13
67	Targeted molecular imaging of TLR4 in hepatocellular carcinoma using zwitterionic near-infrared fluorophores. <i>Quantitative Imaging in Medicine and Surgery</i> , 2019 , 9, 1548-1555	3.6	10

(2017-2019)

66	Real-Time Imaging of Vaccine Biodistribution Using Zwitterionic NIR Nanoparticles. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1900035	10.1	6	
65	Chemical Modulation of Bioengineered Exosomes for Tissue-Specific Biodistribution. <i>Advanced Therapeutics</i> , 2019 , 2, 1900111	4.9	13	
64	Renal clearable nanochelators for iron overload therapy. <i>Nature Communications</i> , 2019 , 10, 5134	17.4	34	
63	Effect of Alkylamines on Morphology Control of Silver Nanoshells for Highly Enhanced Raman Scattering. <i>ACS Applied Materials & Acs Applied </i>	9.5	11	
62	Two-dimensional SERS encoding method for on-bead peptide sequencing in high-throughput bioanalysis. <i>Chemical Communications</i> , 2019 , 55, 2700-2703	5.8	7	
61	Fluorescence Lifetime-Based Tumor Contrast Enhancement Using an EGFR Antibody-Labeled Near-Infrared Fluorophore. <i>Clinical Cancer Research</i> , 2019 , 25, 6653-6661	12.9	13	
60	Highly-Soluble Cyanine J-aggregates Entrapped by Liposomes for Optical Imaging around 930 nm. <i>Theranostics</i> , 2019 , 9, 381-390	12.1	20	
59	Real-Time Imaging of Brain Tumor for Image-Guided Surgery. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800066	10.1	32	
58	Antibody-Based Therapeutics: Ultrasensitive NIR-SERRS Probes with Multiplexed Ratiometric Quantification for In Vivo Antibody Leads Validation (Adv. Healthcare Mater. 4/2018). <i>Advanced Healthcare Materials</i> , 2018 , 7, 1870019	10.1		
57	Renally-Clearable Polymeric Nanochelator for Iron Overload Therapy. <i>FASEB Journal</i> , 2018 , 32, 571.7	0.9		
56	Ultrasensitive NIR-SERRS Probes with Multiplexed Ratiometric Quantification for In Vivo Antibody Leads Validation. <i>Advanced Healthcare Materials</i> , 2018 , 7, 1700870	10.1	12	
55	Theranostic Nanosystems for Targeted Cancer Therapy. <i>Nano Today</i> , 2018 , 23, 59-72	17.9	58	
54	Development of a smartphone-based rapid dual fluorescent diagnostic system for the simultaneous detection of influenza A and H5 subtype in avian influenza A-infected patients. <i>Theranostics</i> , 2018 , 8, 6132-6148	12.1	17	
53	PSMA-targeted contrast agents for intraoperative imaging of prostate cancer. <i>Chemical Communications</i> , 2017 , 53, 1611-1614	5.8	27	
52	Intraoperative Near-Infrared Fluorescence Imaging of Thymus in Preclinical Models. <i>Annals of Thoracic Surgery</i> , 2017 , 103, 1132-1141	2.7	3	
51	Synthesis of optically tunable bumpy silver nanoshells by changing the silica core size and their SERS activities. <i>RSC Advances</i> , 2017 , 7, 40255-40261	3.7	13	
50	A dual modal silver bumpy nanoprobe for photoacoustic imaging and SERS multiplexed identification of in vivo lymph nodes. <i>Nanoscale</i> , 2017 , 9, 12556-12564	7.7	25	
49	Nanoslit-concentration-chip integrated microbead-based protein assay system for sensitive and quantitative detection. <i>RSC Advances</i> , 2017 , 7, 29679-29685	3.7	1	

48	Thin silica shell coated Ag assembled nanostructures for expanding generality of SERS analytes. <i>PLoS ONE</i> , 2017 , 12, e0178651	3.7	13
47	Renal Clearable Organic Nanocarriers for Bioimaging and Drug Delivery. <i>Advanced Materials</i> , 2016 , 28, 8162-8168	24	90
46	Large scale synthesis of surface-enhanced Raman scattering nanoprobes with high reproducibility and long-term stability. <i>Journal of Industrial and Engineering Chemistry</i> , 2016 , 33, 22-27	6.3	24
45	PSA Detection with Femtomolar Sensitivity and a Broad Dynamic Range Using SERS Nanoprobes and an Area-Scanning Method. <i>ACS Sensors</i> , 2016 , 1, 645-649	9.2	59
44	Plasmon-Enhanced Sub-Bandgap Photocatalysis via Triplet-Triplet Annihilation Upconversion for Volatile Organic Compound Degradation. <i>Environmental Science & Environmental Sc</i>	1 9 2·3	45
43	Orientation and density control of bispecific anti-HER2 antibody on functionalized carbon nanotubes for amplifying effective binding reactivity to cancer cells. <i>Nanoscale</i> , 2015 , 7, 6363-73	7.7	11
42	Direct identification of on-bead peptides using surface-enhanced Raman spectroscopic barcoding system for high-throughput bioanalysis. <i>Scientific Reports</i> , 2015 , 5, 10144	4.9	24
41	A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface. <i>Review of Scientific Instruments</i> , 2015 , 86, 055004	1.7	9
40	Fabrication of mono-dispersed silica-coated quantum dot-assembled magnetic nanoparticles. <i>RSC Advances</i> , 2015 , 5, 32072-32077	3.7	13
39	Fluorescence-Raman dual modal endoscopic system for multiplexed molecular diagnostics. <i>Scientific Reports</i> , 2015 , 5, 9455	4.9	63
38	Corrigendum to "Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes" [Biomaterials 45 (2015) 81-92]. <i>Biomaterials</i> , 2015 , 65, 124-125	15.6	2
37	Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. <i>Nanoscale</i> , 2015 , 7, 18848-62	7.7	88
36	Graphene oxide-encoded Ag nanoshells with single-particle detection sensitivity towards cancer cell imaging based on SERRS. <i>Analyst, The</i> , 2015 , 140, 3362-7	5	13
35	Fabrication of Ag nanoaggregates/SiO2 yolk@hell nanoprobes for surface-enhanced Raman scattering. <i>Journal of Industrial and Engineering Chemistry</i> , 2015 , 32, 34-38	6.3	5
34	Ligand immobilization on polydiacetylene-coated and surface-enhanced Raman scattering-encoded beads for label-free detection. <i>Journal of Industrial and Engineering Chemistry</i> , 2015 , 21, 158-162	6.3	11
33	Preparation of plasmonic magnetic nanoparticles and their light scattering properties. <i>RSC Advances</i> , 2015 , 5, 21050-21053	3.7	10
32	Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes. <i>Biomaterials</i> , 2015 , 45, 81-92	15.6	62
31	Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation. <i>PLoS ONE</i> , 2015 , 10, e0143727	3.7	25

(2011-2014)

30	One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. Journal of Materials Chemistry B, 2014 , 2, 4415-4421	7.3	46
29	Nanoslit membrane-integrated fluidic chip for protein detection based on size-dependent particle trapping. <i>Lab on A Chip</i> , 2014 , 14, 237-43	7.2	7
28	Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity. <i>ACS Applied Materials & Discrete Sens</i> , 2014, 6, 11859-63	9.5	41
27	Plasmon-enhanced dye-sensitized solar cells using SiO2 spheres decorated with tightly assembled silver nanoparticles. <i>RSC Advances</i> , 2014 , 4, 19851	3.7	15
26	Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides. <i>ACS Applied Materials & Description of Pesticides and Performance and</i>	9.5	105
25	Facile synthesis of monodispersed silica-coated magnetic nanoparticles. <i>Journal of Industrial and Engineering Chemistry</i> , 2014 , 20, 2646-2649	6.3	56
24	Luminescent Graphene Oxide with a Peptide-Quencher Complex for Optical Detection of Cell-Secreted Proteases by a Turn-On Response. <i>Advanced Functional Materials</i> , 2014 , 24, 5119-5128	15.6	35
23	Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes. <i>Bulletin of the Korean Chemical Society</i> , 2014 , 35, 941-944	1.2	1
22	Near-Infrared SERS Nanoprobes with Plasmonic Au/Ag Hollow-Shell Assemblies for In Vivo Multiplex Detection. <i>Advanced Functional Materials</i> , 2013 , 23, 3719-3727	15.6	106
21	Quantum dot-assembled nanoparticles with polydiacetylene supramolecule toward label-free, multiplexed optical detection. <i>Journal of Colloid and Interface Science</i> , 2013 , 394, 44-8	9.3	8
20		9·3 9·5	14
	multiplexed optical detection. <i>Journal of Colloid and Interface Science</i> , 2013 , 394, 44-8 Polymer-mediated formation and assembly of silver nanoparticles on silica nanospheres for sensitive surface-enhanced Raman scattering detection. <i>ACS Applied Materials & Company Surfaces</i> ,	9.5	
20	multiplexed optical detection. <i>Journal of Colloid and Interface Science</i> , 2013 , 394, 44-8 Polymer-mediated formation and assembly of silver nanoparticles on silica nanospheres for sensitive surface-enhanced Raman scattering detection. <i>ACS Applied Materials & Distriction and Sensitive Science</i> , 2013 , 5, 12804-10 Nanoprobes: Near-Infrared SERS Nanoprobes with Plasmonic Au/Ag Hollow-Shell Assemblies for Indiana.	9.5	14
20	multiplexed optical detection. <i>Journal of Colloid and Interface Science</i> , 2013 , 394, 44-8 Polymer-mediated formation and assembly of silver nanoparticles on silica nanospheres for sensitive surface-enhanced Raman scattering detection. <i>ACS Applied Materials & Detection (ACS Applied Materials</i>	9.5 8 2 8 ⁶	14
20 19 18	multiplexed optical detection. <i>Journal of Colloid and Interface Science</i> , 2013 , 394, 44-8 Polymer-mediated formation and assembly of silver nanoparticles on silica nanospheres for sensitive surface-enhanced Raman scattering detection. <i>ACS Applied Materials & Detection (ACS Applied Materials & Detection & Dete</i>	9.5 828 ⁶ 15.6	14
20 19 18	Polymer-mediated formation and assembly of silver nanoparticles on silica nanospheres for sensitive surface-enhanced Raman scattering detection. ACS Applied Materials & Detection and Sensitive surface-enhanced Raman scattering detection. ACS Applied Materials & Detection and Sensitive surface-enhanced Raman scattering detection. ACS Applied Materials & Detection and Sensitive a	9.5 828 ⁶ 15.6	14 108
20 19 18 17 16	Polymer-mediated formation and assembly of silver nanoparticles on silica nanospheres for sensitive surface-enhanced Raman scattering detection. <i>ACS Applied Materials & Description of Sensitive Surface-enhanced Raman Scattering Detection. ACS Applied Materials & Detection Sensitive Surface-enhanced Raman Scattering Detection. ACS Applied Materials & Detection Sensitive Sen</i>	9.5 828 ⁶ 15.6	14 108

12	Magnetic field induced aggregation of nanoparticles for sensitive molecular detection. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 7298-303	3.6	30
11	Immobilization of aptamer-based molecular beacons onto optically-encoded micro-sized beads. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 6249-52	1.3	5
10	Base effects on fabrication of silver nanoparticles embedded silica nanocomposite for surface-enhanced Raman scattering (SERS). <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 579-8	8 3 ·3	16
9	Preparation of polydiacetylene immobilized optically encoded beads. <i>Journal of Colloid and Interface Science</i> , 2011 , 355, 29-34	9.3	13
8	Recyclable NHC-Ni Complex Immobilized on Magnetite/Silica Nanoparticles for C-S Cross-Coupling of Aryl Halides with Thiols. <i>Synlett</i> , 2010 , 2010, 2518-2522	2.2	9
7	Facile method of preparing silver-embedded polymer beads and their antibacterial effect. <i>Journal of Materials Science</i> , 2010 , 45, 3106-3108	4.3	11
6	Multilayer fluorescence optically encoded beads for protein detection. <i>Analytical Biochemistry</i> , 2010 , 396, 313-5	3.1	16
5	Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. <i>Small</i> , 2010 , 6, 119-25	11	161
4	Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. <i>Biomaterials</i> , 2009 , 30, 3915-25	15.6	53
3	Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy. <i>Analytical Biochemistry</i> , 2009 , 391, 24-30	3.1	59
2	Macroporous polystyrene-supported palladium catalyst containing a bulky N-heterocyclic carbene ligand for Suzuki reaction of aryl chlorides. <i>Organic Letters</i> , 2008 , 10, 1609-12	6.2	119
1	Dihydroxylation of Olefins Catalyzed by Polystyrene-sg-imidazolium Resin-Supported Osmium Complex. <i>Synlett</i> , 2008 , 2008, 2313-2316	2.2	2