Umberto Picchini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2745724/publications.pdf Version: 2024-02-01

LIMBERTO PICCHINI

#	Article	IF	CITATIONS
1	Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: A pilot study*. Critical Care Medicine, 2006, 34, 2287-2293.	0.9	283
2	Prophylactic fenoldopam for renal protection in sepsis: A randomized, double-blind, placebo-controlled pilot trial*. Critical Care Medicine, 2005, 33, 2451-2456.	0.9	116
3	Terlipressin versus Norepinephrine to Counteract Anesthesia-induced Hypotension in Patients Treated with Renin-Angiotensin System Inhibitors: Effects on Systemic and Regional Hemodynamics. Anesthesiology, 2005, 102, 12-19.	2.5	49
4	Stochastic Differential Mixed-Effects Models. Scandinavian Journal of Statistics, 2010, 37, 67-90.	1.4	49
5	Practical estimation of high dimensional stochastic differential mixed-effects models. Computational Statistics and Data Analysis, 2011, 55, 1426-1444.	1.2	47
6	Inference for SDE Models via Approximate Bayesian Computation. Journal of Computational and Graphical Statistics, 2014, 23, 1080-1100.	1.7	35
7	A general approach to the apparent permeability index. Journal of Pharmacokinetics and Pharmacodynamics, 2008, 35, 235-248.	1.8	32
8	Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations. Journal of Mathematical Biology, 2006, 53, 771-796.	1.9	31
9	A mathematical model of the euglycemic hyperinsulinemic clamp. Theoretical Biology and Medical Modelling, 2005, 2, 44.	2.1	22
10	Parameters of the Diffusion Leaky Integrate-and-Fire Neuronal Model for a Slowly Fluctuating Signal. Neural Computation, 2008, 20, 2696-2714.	2.2	20
11	Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics. Mathematical Medicine and Biology, 2008, 25, 141-155.	1.2	19
12	Bayesian inference for stochastic differential equation mixed effects models of a tumour xenography study. Journal of the Royal Statistical Society Series C: Applied Statistics, 2019, 68, 887-913.	1.0	12
13	Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms. Computational Statistics and Data Analysis, 2021, 157, 107151.	1.2	12
14	Scalable and flexible inference framework for stochastic dynamic single-cell models. PLoS Computational Biology, 2022, 18, e1010082.	3.2	10
15	Accelerating inference for diffusions observed with measurement error and large sample sizes using approximate Bayesian computation. Journal of Statistical Computation and Simulation, 2016, 86, 195-213.	1.2	9
16	Approximate maximum likelihood estimation using data-cloning ABC. Computational Statistics and Data Analysis, 2017, 105, 166-183.	1.2	9
17	Construction of predictive promoter models on the example of antibacterial response of human epithelial cells. Theoretical Biology and Medical Modelling, 2005, 2, 2.	2.1	8
18	Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models. Computational Statistics, 2018, 33, 179-212.	1.5	8

#	Article	IF	CITATIONS
19	Modeling Serum Creatinine in Septic ICU Patients. Cardiovascular Engineering (Dordrecht,) Tj ETQq1 1 0.784314	rgBT /	Overlock 10 Ti
20	Likelihood-free stochastic approximation EM for inference in complex models. Communications in Statistics Part B: Simulation and Computation, 2019, 48, 861-881.	1.2	1
21	Sequentially Guided MCMC Proposals for Synthetic Likelihoods and Correlated Synthetic Likelihoods. Bayesian Analysis, 2022, -1, .	3.0	Ο