Zumin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2745660/publications.pdf

Version: 2024-02-01

394421 454955 1,136 32 19 30 citations h-index g-index papers 32 32 32 1609 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High Phaseâ€Purity 1Tâ€MoS ₂ Ultrathin Nanosheets by a Spatially Confined Template. Angewandte Chemie - International Edition, 2019, 58, 17621-17624.	13.8	109
2	Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie - International Edition, 2019, 58, 996-1001.	13.8	104
3	Bismuth oxychloride hollow microspheres with high visible light photocatalytic activity. Nano Research, 2016, 9, 593-601.	10.4	88
4	Hollow Micro/Nanostructured Ceriaâ€Based Materials: Synthetic Strategies and Versatile Applications. Advanced Materials, 2019, 31, e1800592.	21.0	87
5	Efficient water oxidation under visible light by tuning surface defects on ceria nanorods. Journal of Materials Chemistry A, 2015, 3, 20465-20470.	10.3	82
6	High Phaseâ€Purity 1Tâ€MoS 2 Ultrathin Nanosheets by a Spatially Confined Template. Angewandte Chemie, 2019, 131, 17785-17788.	2.0	67
7	Composite Yttriumâ€Carbonaceous Spheres Templated Multiâ€Shell YVO ₄ Hollow Spheres with Superior Upconversion Photoluminescence. Advanced Materials, 2017, 29, 1604377.	21.0	51
8	Heterostructured bismuth vanadate multi-shell hollow spheres with high visible-light-driven photocatalytic activity. Materials Research Bulletin, 2017, 86, 44-50.	5.2	48
9	Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions. Materials Chemistry Frontiers, 2018, 2, 1024-1030.	5.9	46
10	Stable confinement of Fe/Fe3C in Fe, N-codoped carbon nanotube towards robust zinc-air batteries. Chinese Chemical Letters, 2021, 32, 1121-1126.	9.0	45
11	When hollow multishelled structures (HoMSs) meet metal–organic frameworks (MOFs). Chemical Science, 2020, 11, 5359-5368.	7.4	39
12	Y ₂ O ₃ :Yb ³⁺ /Er ³⁺ Hollow Spheres with Controlled Inner Structures and Enhanced Upconverted Photoluminescence. Small, 2015, 11, 2768-2773.	10.0	35
13	A MOF-derived CuCo(O)@ carbon–nitrogen framework as an efficient synergistic catalyst for the hydrolysis of ammonia borane. Inorganic Chemistry Frontiers, 2020, 7, 2043-2049.	6.0	34
14	Construction of multi-shelled Bi2WO6 hollow microspheres with enhanced visible light photo-catalytic performance. Materials Research Bulletin, 2018, 99, 331-335.	5.2	29
15	Lanthanideâ€Doped Photoluminescence Hollow Structures: Recent Advances and Applications. Small, 2019, 15, e1804510.	10.0	28
16	Ti-MOF Derived N-Doped TiO2 Nanostructure as Visible-light-driven Photocatalyst. Chemical Research in Chinese Universities, 2020, 36, 447-452.	2.6	26
17	Controlled synthesis of highly active Au/CeO ₂ nanotubes for CO oxidation. Materials Chemistry Frontiers, 2017, 1, 1629-1634.	5.9	21
18	Facile Synthesis of Fe-based MOFs(Fe-BTC) as Efficient Adsorbent for Water Purifications. Chemical Research in Chinese Universities, 2019, 35, 564-569.	2.6	21

#	Article	IF	CITATIONS
19	Highly active CeO2 hollow-shell spheres with Al doping. Science China Materials, 2017, 60, 646-653.	6.3	20
20	Multi-shelled copper oxide hollow spheres and their gas sensing properties. Materials Research Bulletin, 2017, 87, 214-218.	5.2	20
21	Semicrystalline SrTiO ₃ â€Decorated Anatase TiO ₂ Nanopie as Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Small Methods, 2022, 6, e2101567.	8.6	20
22	Cobalt hollow nanospheres: controlled synthesis, modification and highly catalytic performance for hydrolysis of ammonia borane. Science Bulletin, 2017, 62, 326-331.	9.0	17
23	Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie, 2019, 131, 1008-1013.	2.0	17
24	The development of hollow multishelled structure: from the innovation of synthetic method to the discovery of new characteristics. Science China Chemistry, 2022, 65, 7-19.	8.2	17
25	The biomimetic engineering of metal–organic frameworks with single-chiral-site precision for asymmetric hydrogenation. Journal of Materials Chemistry A, 2022, 10, 6463-6469.	10.3	14
26	Controlled synthesis of silkworm cocoon-like \hat{l}_{\pm} -Fe2O3 and its adsorptive properties for organic dyes and Cr(VI). Materials Research Bulletin, 2018, 100, 302-307.	5.2	13
27	Tuning the Mn Dopant To Boost the Hydrogen Evolution Performance of CoP Nanowire Arrays. Inorganic Chemistry, 2022, 61, 9832-9839.	4.0	13
28	Anchoring nitrogen-doped Co2P nanoflakes on NiCo2O4 nanorod arrays over nickel foam as high-performance 3D electrode for alkaline hydrogen evolution. Green Energy and Environment, 2023, 8, 470-477.	8.7	12
29	Nanostructured BiVO4 Derived from Bi-MOF for Enhanced Visible-light Photodegradation. Chemical Research in Chinese Universities, 2020, 36, 120-126.	2.6	11
30	Controlled synthesis of Y2O3 nanoplates with improved performance. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	2
31	Frontispiece: Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
32	Frontispiz: Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie, 2019, 131, .	2.0	0