Ujjal K Gautam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2744851/publications.pdf

Version: 2024-02-01

83 papers 7,051 citations

36 h-index 84 g-index

84 all docs 84 docs citations

84 times ranked 9030 citing authors

#	Article	IF	CITATIONS
1	ZnS nanostructures: From synthesis to applications. Progress in Materials Science, 2011, 56, 175-287.	32.8	1,134
2	Inorganic semiconductor nanostructures and their field-emission applications. Journal of Materials Chemistry, 2008, 18, 509-522.	6.7	586
3	Singleâ€Crystalline ZnS Nanobelts as Ultravioletâ€Light Sensors. Advanced Materials, 2009, 21, 2034-2039.	21.0	537
4	ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors. Critical Reviews in Solid State and Materials Sciences, 2009, 34, 190-223.	12.3	306
5	Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1â^xZnxS and ZnO/Pt/CdS1â^xSex hybrid nanostructures. Energy and Environmental Science, 2013, 6, 3589.	30.8	225
6	Template Deformationâ€Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Fieldâ€Emission. Advanced Functional Materials, 2009, 19, 3165-3172.	14.9	224
7	An Efficient Way to Assemble ZnS Nanobelts as Ultravioletâ€Light Sensors with Enhanced Photocurrent and Stability. Advanced Functional Materials, 2010, 20, 500-508.	14.9	222
8	Highâ€Performance Blue/Ultravioletâ€Lightâ€Sensitive ZnSeâ€Nanobelt Photodetectors. Advanced Materials, 2009, 21, 5016-5021.	21.0	217
9	Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale, 2011, 3, 1120.	5.6	210
10	Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process. Journal of Materials Chemistry, 2004, 14, 2530.	6.7	192
11	Synthesis, Structure, and Multiply Enhanced Field-Emission Properties of Branched ZnS Nanotubeâ^'In Nanowire Coreâ^'Shell Heterostructures. ACS Nano, 2008, 2, 1015-1021.	14.6	187
12	Structure and Cathodoluminescence of Individual ZnS/ZnO Biaxial Nanobelt Heterostructures. Nano Letters, 2008, 8, 2794-2799.	9.1	185
13	N-Doped Graphene–VO ₂ (B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery. ACS Applied Materials & Interfaces, 2013, 5, 2708-2714.	8.0	172
14	Electrical Transport and Highâ€Performance Photoconductivity in Individual ZrS ₂ Nanobelts. Advanced Materials, 2010, 22, 4151-4156.	21.0	169
15	Rapid and Direct Conversion of Graphite Crystals into Highâ€Yielding, Goodâ€Quality Graphene by Supercritical Fluid Exfoliation. Chemistry - A European Journal, 2010, 16, 6488-6494.	3.3	167
16	Solvothermal Synthesis, Cathodoluminescence, and Fieldâ€Emission Properties of Pure and Nâ€Doped ZnO Nanobullets. Advanced Functional Materials, 2009, 19, 131-140.	14.9	153
17	Soya derived heteroatom doped carbon as a promising platform for oxygen reduction, supercapacitor and CO2 capture. Carbon, 2017, 114, 679-689.	10.3	134
18	Cobalt Hydroxide/Oxide Hexagonal Ring–Graphene Hybrids through Chemical Etching of Metal Hydroxide Platelets by Graphene Oxide: Energy Storage Applications. ACS Nano, 2014, 8, 2755-2765.	14.6	120

#	Article	IF	Citations
19	Use of the liquid–liquid interface for generating ultrathin nanocrystalline films of metals, chalcogenides, and oxides. Journal of Colloid and Interface Science, 2005, 289, 305-318.	9.4	118
20	Generation of Onions and Nanotubes of GaS and GaSe through Laser and Thermally Induced Exfoliation. Journal of the American Chemical Society, 2005, 127, 3658-3659.	13.7	103
21	Multiangular Branched ZnS Nanostructures with Needle-Shaped Tips:  Potential Luminescent and Field-Emitter Nanomaterial. Journal of Physical Chemistry C, 2008, 112, 4735-4742.	3.1	89
22	Ultra Narrow PbS Nanorods with Intense Fluorescence. Journal of the American Chemical Society, 2008, 130, 4594-4595.	13.7	83
23	Template-Free Chemical Route to Ultrathin Single-Crystalline Films of CuS and CuO Employing the Liquidâ°Liquid Interface. Langmuir, 2004, 20, 10775-10778.	3.5	78
24	New strategies for the synthesis of t-selenium nanorods and nanowires. Journal of Materials Chemistry, 2003, 13, 2845.	6.7	74
25	Heterostructures and superlattices in one-dimensional nanoscale semiconductors. Journal of Materials Chemistry, 2009, 19, 5683.	6.7	68
26	A solvothermal route to capped CdSe nanoparticles. Chemical Communications, 2001, , 629-630.	4.1	58
27	Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33737-33767.	8.0	52
28	Mechanochemical Synthesis of Freeâ€Standing Platinum Nanosheets and Their Electrocatalytic Properties. Advanced Materials, 2015, 27, 4430-4437.	21.0	50
29	A strategy for the synthesis of nanocrystal films of metal chalcogenides and oxides by employing the liquid–liquid interface. Chemical Physics Letters, 2003, 381, 1-6.	2.6	48
30	A simple synthesis and characterization of CuS nanocrystals. Bulletin of Materials Science, 2006, 29, 1-5.	1.7	47
31	Unipolar assembly of zinc oxide rods manifesting polarity-driven collective luminescence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13588-13592.	7.1	44
32	Nanomaterial Engineering and Property Studies in a Transmission Electron Microscope. Advanced Materials, 2012, 24, 177-194.	21.0	43
33	Confinement Matters: Stabilization of CdS Nanoparticles inside a Postmodified MOF toward Photocatalytic Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2022, 14, 25220-25231.	8.0	41
34	Preparation of PbS and PbSe nanocrystals by a new solvothermal route. Materials Research Bulletin, 2004, 39, 669-676.	5.2	40
35	GaS and GaSe nanowalls and their transformation to Ga2O3 and GaN nanowalls. Chemical Communications, 2005, , 3995.	4.1	40
36	Ultrathin Twisty PdNi Alloy Nanowires as Highly Active ORR Electrocatalysts Exhibiting Morphology-Induced Durability over 200 K Cycles. Nano Letters, 2022, 22, 246-254.	9.1	40

#	Article	IF	Citations
37	A solvothermal route to CdS nanocrystals. Chemical Physics Letters, 2003, 375, 560-564.	2.6	38
38	Facile transfer of excited electrons in Au/SnS2 nanosheets for efficient solar-driven selective organic transformations. Applied Catalysis B: Environmental, 2021, 286, 119927.	20.2	38
39	Synthesis of chemically bonded CNT–graphene heterostructure arrays. RSC Advances, 2012, 2, 8250.	3.6	37
40	Pd–Pt alloys nanowires as support-less electrocatalyst with high synergistic enhancement in efficiency for methanol oxidation in acidic medium. Journal of Colloid and Interface Science, 2016, 463, 99-106.	9.4	32
41	Ni-Fe-layered double hydroxide/N-doped graphene oxide nanocomposite for the highly efficient removal of Pb(II) and Cd(II) ions from water. Journal of Solid State Chemistry, 2019, 280, 120963.	2.9	32
42	Defect-rich, negatively-charged SnS2 nanosheets for efficient photocatalytic Cr(VI) reduction and organic dye adsorption in water. Journal of Colloid and Interface Science, 2021, 603, 110-119.	9.4	31
43	Light-Induced Hypoxia in Carbon Quantum Dots and Ultrahigh Photocatalytic Efficiency. Journal of the American Chemical Society, 2022, 144, 2580-2589.	13.7	31
44	High-Yield Synthesis of Sub-10 nm Pt Nanotetrahedra with Bare ⟠111⟠© Facets for Efficient Electrocatalytic Applications. ACS Applied Materials & Electrocatalytic Applications. ACS Applied Materials & Electrocatalytic Applications.	8.0	30
45	N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction. Science and Technology of Advanced Materials, 2015, 16, 014803.	6.1	28
46	Soft chemical approaches to inorganic nanostructures. Pure and Applied Chemistry, 2006, 78, 1619-1650.	1.9	26
47	Effect of crystalline filling on the mechanical response of carbon nanotubes. Carbon, 2009, 47, 541-544.	10.3	26
48	Solvothermal routes to capped oxide and chalcogenide nanoparticles. Pure and Applied Chemistry, 2002, 74, 1643-1649.	1.9	25
49	Asymmetric tungsten oxide nanobrushes via oriented attachment and Ostwald ripening. CrystEngComm, 2011, 13, 4074.	2.6	24
50	C ₆₀ â€Mediated Molecular Shape Sorting: Separation and Purification of Geometrical Isomers. Angewandte Chemie - International Edition, 2014, 53, 13523-13527.	13.8	23
51	Ultra-Thin Crystalline Films of CdSe and CuSe Formed at the Organic-Aqueous Interface. Journal of Nanoscience and Nanotechnology, 2007, 7, 1916-1922.	0.9	21
52	Kinetically stabilized C60–toluene solvate nanostructures with a discrete absorption edge enabling supramolecular topotactic molecular exchange. Carbon, 2014, 74, 44-53.	10.3	21
53	Boosting Bifunctional Oxygen Reduction and Methanol Oxidation Electrocatalytic Activity with 2D Superlattice-Forming Pd Nanocubes Generated by Precise Acid Etching. ACS Applied Nano Materials, 2020, 3, 8117-8125.	5.0	21
54	Magnetic and transport properties, and electronic structure of the layered chalcogenide AgCrSe2. Solid State Communications, 2002, 122, 607-612.	1.9	20

#	Article	IF	Citations
55	Synthesis of Bi ₃ TaO ₇ â€"Bi ₄ TaO ₈ Br composites in ambient air and their high photocatalytic activity upon metal loading. Dalton Transactions, 2019, 48, 7110-7116.	3.3	20
56	â€~Autophagy' and unique aerial oxygen harvesting properties exhibited by highly photocatalytic carbon quantum dots. Carbon, 2021, 181, 16-27.	10.3	19
57	Wavelength dependent luminescence decay kinetics in †quantum-confined' g-C ₃ N ₄ nanosheets exhibiting high photocatalytic efficiency upon plasmonic coupling. Journal of Materials Chemistry A, 2020, 8, 20581-20592.	10.3	16
58	The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: I. Data processing for the extraction of the elastic modulus. Nanotechnology, 2009, 20, 405706.	2.6	15
59	High and reversible oxygen uptake in carbon dot solutions generated from polyethylene facilitating reactant-enhanced solar light harvesting. Nanoscale, 2020, 12, 10480-10490.	5.6	15
60	Unravelling charge-transfer in Pd to pyrrolic-N bond for superior electrocatalytic performance. Journal of Materials Chemistry A, 2021, 9, 10966-10978.	10.3	15
61	Synthesis of metal–semiconductor heterojunctions inside carbon nanotubes. Journal of Materials Chemistry, 2009, 19, 4414.	6.7	14
62	The electrical delivery of a sublimable II–VI compound by vapor transport in carbon nanotubes. Carbon, 2011, 49, 3747-3754.	10.3	14
63	3D Porous Polymeric-Foam-Supported Pd Nanocrystal as a Highly Efficient and Recyclable Catalyst for Organic Transformations. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10120-10130.	8.0	14
64	Synthesis and thermal decomposition of metal hydroxide intercalated saponite. Applied Clay Science, 2014, 87, 163-169.	5.2	13
65	Self-immobilized Pd nanowires as an excellent platform for a continuous flow reactor: efficiency, stability and regeneration. Nanoscale, 2018, 10, 21396-21405.	5.6	13
66	Comparative study of the stability of sulfide materials encapsulated in and expelled from multi-walled carbon nanotube capsules. Carbon, 2011, 49, 342-346.	10.3	12
67	Facile d-band tailoring in Sub-10Ânm Pd cubes by in-situ grafting on nitrogen-doped graphene for highly efficient organic transformations. Journal of Colloid and Interface Science, 2021, 590, 175-185.	9.4	12
68	Soft chemical routes to semiconductor nanostructures. Pramana - Journal of Physics, 2005, 65, 549-564.	1.8	11
69	The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: II. Slenderness ratio and crystalline filling effects. Nanotechnology, 2009, 20, 405707.	2.6	11
70	Nanocrystalline Ag ₃ PO ₄ for Sunlight- and Ambient Air-Driven Oxidation of Amines: High Photocatalytic Efficiency and a Facile Catalyst Regeneration Strategy. ACS Applied Materials & Amp; Interfaces, 2020, 12, 29324-29334.	8.0	11
71	Oxidation of Toluene and Other Examples of CH Bond Activation by CdO ₂ and ZnO ₂ Nanoparticles. ChemPlusChem, 2013, 78, 837-842.	2.8	9
72	Dimension switchable auto-fluorescent peptide-based 1D and 2D nano-assemblies and their self-influence on intracellular fate and drug delivery. Nanoscale, 2022, 14, 715-735.	5. 6	8

#	Article	IF	CITATIONS
73	Single-step insertion of M-Nx moieties in commercial carbon for sustainable bifunctional electrocatalysis: Mapping insertion capacity, mass loss, and carbon reconstruction. Carbon, 2022, 196, 1001-1011.	10.3	8
74	Inorganically filled carbon nanotubes: Synthesis and properties. Pure and Applied Chemistry, 2010, 82, 2097-2109.	1.9	7
75	Compressive strain induced by multiple phase distribution and atomic ordering in PdCu nanoparticles to enhanced ethanol oxidation reaction performance. Journal of Power Sources, 2021, 506, 230168.	7.8	7
76	Fabrication of Luminescent Silver Doped PbS Nanowires in Polymer. Journal of Nanoscience and Nanotechnology, 2011, 11, 10234-10239.	0.9	5
77	Room temperature conversion of metal oxides (MO, M = Zn, Cd and Mg) to peroxides: insight into a novel, scalable and recyclable synthesis leading to their lowest decomposition temperatures. CrystEngComm, 2014, 16 , $1050-1055$.	2.6	5
78	â€~Pre-optimization' of the solvent of nanoparticle synthesis for superior catalytic efficiency: a case study with Pd nanocrystals. Nanoscale Advances, 2021, 3, 2366-2376.	4.6	3
79	A  self-activating' Bi ₃ TaO ₇ –Bi ₄ TaO ₈ Br photocataly and its use in the sustainable production of pro-fluorophoric rhodamine-110. Green Chemistry, 2022, 24, 5514-5523.	st 9.0	3
80	Scanning tunneling microscopy and spectroscopy of Se and Te nanorods. Solid State Communications, 2005, 136, 169-172.	1.9	2
81	Tuning the Oxygen Release Temperature of Metal Peroxides over a Wide Range by Formation of Solid Solutions. Chemistry of Materials, 2014, 26, 2720-2725.	6.7	2
82	Graphene Ingestion and Regrowth on "Carbon-Starved―Metal Electrodes. ACS Nano, 2017, 11, 10575-10582.	14.6	2
83	Prospects in Engineering Congested Molecular Diffusion at the Stabilizer Layer of Metal Nanocrystals for Ultrahigh Catalytic Activity. Journal of Physical Chemistry C, 2021, 125, 9827-9838.	3.1	1