Xing-Wang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2744700/publications.pdf Version: 2024-02-01

XING MANG CHENG

#	Article	IF	CITATIONS
1	A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Materials and Design, 2020, 191, 108662.	7.0	286
2	Broadband microwave absorption of Fe3O4BaTiO3 composites enhanced by interfacial polarization and impedance matching. Composites Part B: Engineering, 2019, 163, 598-605.	12.0	96
3	Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB+TiC)/TC4 composites. Journal of Alloys and Compounds, 2017, 726, 240-253.	5.5	88
4	Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 80-89.	5.6	86
5	High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Materials and Design, 2016, 109, 219-226.	7.0	85
6	Design of novel low-density refractory high entropy alloys for high-temperature applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 755, 318-322.	5.6	73
7	Designing V NbMoTa refractory high-entropy alloys with improved properties for high-temperature applications. Scripta Materialia, 2021, 191, 131-136.	5.2	70
8	Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys. Journal of Alloys and Compounds, 2019, 803, 778-785.	5.5	69
9	Fabrication, characterization and tensile property of a novel Ti2Ni/TiNi micro-laminated composite. Materials and Design, 2016, 92, 486-493.	7.0	56
10	Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2â^'x (xÂ=Â1.0,) Tj ETQ	990 <u>0 0</u> rgE	ST /Overlock 1
11	Designing TiVNbTaSi refractory high-entropy alloys with ambient tensile ductility. Scripta Materialia, 2022, 206, 114230.	5.2	51
12	Synthesis and Electromagnetic and Microwave Absorption Properties of Monodispersive Fe ₃ O ₄ /α-Fe ₂ O ₃ Composites. ACS Applied Nano Materials, 2018, 1, 3935-3944.	5.0	50
13	Failure mechanisms in ballistic performance of Ti–6Al–4V targets having equiaxed and lamellar microstructures. International Journal of Impact Engineering, 2015, 85, 161-169.	5.0	46
14	Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method. Scientific Reports, 2017, 7, 6132.	3.3	45
15	Effect of microstructures on ballistic impact property of Ti–6Al–4V targets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 608, 53-62.	5.6	42
16	Spark plasma sintering of B4C-TiB2-SiC composite ceramics using B4C, Ti3SiC2 and Si as starting materials. Ceramics International, 2018, 44, 21626-21632.	4.8	39
17	The influence of defect structures on the mechanical properties of Ti-6Al-4V alloys deformed by high-pressure torsion at ambient temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 1-13.	5.6	38
18	Mechanical properties of an Al-Zn-Mg alloy processed by ECAP and heat treatments. Journal of Alloys and Compounds, 2018, 769, 631-639.	5.5	38

#	Article	IF	CITATIONS
19	The Microstructure and Mechanical Properties of Refractory High-Entropy Alloys with High Plasticity. Materials, 2018, 11, 208.	2.9	38
20	The role of interfacial reaction on the dynamic mechanical response in graphene nano-flake/Ti composites. Carbon, 2019, 152, 986-990.	10.3	34
21	Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5Ox (x = 0.05, 0.1, 0.2) high-entropy alloys. Materials Letters, 2018, 228, 145-147.	2.6	30
22	Effects of vanadium concentration on mechanical properties of V NbMoTa refractory high-entropy alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 808, 140848.	5.6	30
23	Hydrothermal synthesis and photocatalytic properties of pyrochlore Sm2Zr2O7 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 48-54.	3.9	29
24	Achieving high performance in graphite nano-flakes reinforced titanium matrix composites through a novel reaction interface design. Carbon, 2021, 175, 334-351.	10.3	29
25	Effect of heat treatments on the microstructures and tensile properties of an ultrafine-grained Al-Zn-Mg alloy processed by ECAP. Journal of Alloys and Compounds, 2018, 749, 567-574.	5.5	28
26	Preparation and microwave absorption properties of microsheets VO2(M). Journal of Alloys and Compounds, 2019, 791, 307-315.	5.5	27
27	The effect of Ti–Mo–Nb on the microstructures and tensile properties of a Fe–Mn–Al–C austenitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139220.	5.6	27
28	Good strength-plasticity compatibility in graphene nanoplatelets/Ti composites by strengthening the interface bonding via in-situ formed TiB whisker. Ceramics International, 2021, 47, 4338-4343.	4.8	26
29	Strain rate dependence of compressive behavior in an Al-Zn-Mg alloy processed by ECAP. Journal of Alloys and Compounds, 2019, 791, 1079-1087.	5.5	25
30	The effects of thickness of original Ti foils on the microstructures and mechanical properties of Ti 2 Ni/TiNi laminated composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 292-302.	5.6	24
31	Phase-field simulations of vortex chirality manipulation in ferroelectric thin films. Npj Quantum Materials, 2022, 7, .	5.2	22
32	Al-based bulk metallic glass with large plasticity and ultrahigh strength. Journal of Alloys and Compounds, 2015, 648, 276-279.	5.5	21
33	Microstructural and mechanical properties of in-situ micro-laminated TiC/Ti composite synthesised. Materials Letters, 2018, 228, 1-4.	2.6	21
34	Microstructure, mechanical and physical properties of FeCoNiAlMnW high-entropy films deposited by magnetron sputtering. Applied Surface Science, 2020, 507, 145131.	6.1	21
35	Synthesis, characterization and electromagnetic absorbing performance of multi-step petaloid morphology VO2(M). Ceramics International, 2020, 46, 25493-25502.	4.8	21
36	Microstructures and mechanical properties of CoCrFeNiHfx high-entropy alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139820.	5.6	21

#	Article	IF	CITATIONS
37	Excellent combination of compressive strength and ductility of (CoCrFeNi) (Co0.26Cr0.07Fe0.16Ni0.31Hf0.4) high-entropy alloys. Materials and Design, 2021, 202, 109569.	7.0	20
38	A TiB whisker-reinforced titanium matrix composite with controllable orientation: A novel method and superior strengthening effect. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 830, 142309.	5.6	20
39	Effects of annealing time on the microstructures and tensile properties of formed laminated composites in Ti-Ni system. Journal of Alloys and Compounds, 2017, 699, 695-705.	5.5	19
40	Electromagnetic Wave Absorption Performance on Fe ₃ O ₄ Polycrystalline Synthesized by the Synergy Reduction of Ethylene Glycol and Diethylene Glycol. Journal of Physical Chemistry C, 2018, 122, 3628-3637.	3.1	19
41	Effects of Si additions on microstructures and mechanical properties of VNbTiTaSi refractory high-entropy alloys. Journal of Alloys and Compounds, 2022, 900, 163517.	5.5	19
42	Effects of short time electric pulse heat treatment on microstructures and mechanical properties of hot-rolled Ti–6Al–4V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 104-111.	5.6	18
43	Influence of increasing Al concentration on phase, microstructure and mechanical behaviors of Ni1.5CoFeCu1â ^{°°} xAlxV0.5 high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 523-536.	5.6	18
44	Static and dynamic mechanical properties of Yttrium Aluminum Garnet (YAG). Ceramics International, 2019, 45, 12256-12263.	4.8	18
45	The investigation on Johnson-Cook model and dynamic mechanical behaviors of ultra-high strength steel M54. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142693.	5.6	18
46	Influence of tantalum on mechanical, ferroelectric and dielectric properties of Bi-excess Bi3.25La0.75Ti3O12 thin film. Applied Surface Science, 2019, 463, 1141-1147.	6.1	17
47	Another eutectic point of Co–Cr–Fe–Ni-M (Hf, Ta, Nb) high-entropy system determined using a simple mixture method correlated with mixing enthalpy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140634.	5.6	17
48	Mechanical (compressive) form of driving force triggers the phase transformation from β to ω & α'' phases in metastable β phase-field Ti-5553 alloy. Journal of Materials Science and Technology, 2021, 78, 238-246.	м 10.7	15
49	Achieving well-balanced strength and ductility in GNFs/Ti composite via laminated architecture design. Carbon, 2022, 189, 173-185.	10.3	15
50	Dielectric and ferroelectric properties of Ta-modified Bi3.25La0.75Ti3O12 ceramics. Ceramics International, 2017, 43, 13193-13198.	4.8	14
51	Interface evolution and mechanical properties of nickel coated graphene nanoflakes/pure titanium matrix composites. Journal of Alloys and Compounds, 2021, 853, 157157.	5.5	14
52	Novel high-entropy alloys with high-density ε-D019 and abnormal phase transformation. Scripta Materialia, 2021, 199, 113893.	5.2	14
53	Mechanical properties and pre-oxidation behavior of spark plasma sintered B4C ceramics using (Ti3SiC2+CeO2/La2O3) as sintering aid. Ceramics International, 2020, 46, 22189-22196.	4.8	12
54	The effect of TiC on microstructure and mechanical properties of Ti-5553 beta phase titanium alloy. Materials and Design, 2022, 214, 110395.	7.0	12

#	Article	IF	CITATIONS
55	Electrochemical performance of aluminum niobium oxide as anode for lithium-ion batteries. Rare Metals, 2016, 35, 256-261.	7.1	11
56	Effects of Ti foil thickness on microstructures and mechanical properties of in situ synthesized micro-laminated TiC/Ti composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138296.	5.6	11
57	Omega phase formation and deformation mechanism in heat treated Ti-5553 alloy under high strain rate compression. Materials Letters, 2019, 236, 163-166.	2.6	11
58	Graphene nanoplatelets (GNPs)-templated synthesis of oriented TiB and the inspiration for tailoring three-dimensional (3D) interface structure in GNPs/Ti matrix composites. Materials Characterization, 2021, 181, 111447.	4.4	11
59	Towards high performance in Ti-based composite through manipulating nickel coatings on graphene reinforcement. Journal of Alloys and Compounds, 2022, 893, 162240.	5.5	11
60	Penetration performance of W/Cu double-layer shaped charge liners. Rare Metals, 2016, 35, 184-191.	7.1	10
61	Direct achievement of ultra-high strength and good ductility for high Co-Ni secondary hardening steel by combining spark plasma sintering and deformation. Materials Letters, 2021, 290, 129465.	2.6	10
62	Ultrafast Ferroelectric Domain Switching Induced by Nano‧econd Strainâ€Pulse. Advanced Theory and Simulations, 2022, 5, .	2.8	10
63	Synthesis and magnetic properties of Al doped Zn0.995Mn0.005O powers. Applied Physics Letters, 2009, 94, .	3.3	9
64	Strength-improved Al 65 Cu 16.5 Ti 18.5 amorphous/crystalline alloy synthesized by spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 377-380.	5.6	9
65	Controlling βSn grain orientations in electronic interconnects with single-crystal Cobalt substrates. Acta Materialia, 2020, 194, 422-436.	7.9	9
66	Towards high performance GNFs/Ti composite through simultaneously manipulating laminated microstructure and interface reaction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141230.	5.6	9
67	Study on hot deformation behavior of as-cast 22%W high-density steel. Journal of Materials Research and Technology, 2022, 17, 2355-2368.	5.8	9
68	Adiabatic shear banding of hot-rolling Ti–6Al–4V alloy subjected to dynamic shearing and uniaxial dynamic compression. Rare Metals, 2015, 34, 632-637.	7.1	8
69	Enhanced mechanical properties due to nanocrystallization by isothermal annealing in Al85Ni9Er6 glassy alloy. Journal of Alloys and Compounds, 2017, 695, 3048-3053.	5.5	8
70	Strain induced additional growth and high integrity of TiB-whiskers in titanium matrix composite: intrinsic mechanisms and superior strengthening effects. Materials Research Express, 2019, 6, 126519.	1.6	8
71	Two-dimensional lamellar stacked (NH4)0.8V3O7·3.5H2O: A promising material with high dielectric properties and microwave absorption performance. Applied Surface Science, 2020, 509, 145079.	6.1	8
72	Evolution of microstructures and mechanical properties with tempering temperature of a pearlitic quenched and tempered steel. Journal of Iron and Steel Research International, 2022, 29, 1393-1403.	2.8	8

#	Article	IF	CITATIONS
73	Machine learning correlated with phenomenological mode unlocks the vast compositional space of eutectics of multi-principal element alloys. Materials and Design, 2022, 219, 110795.	7.0	8
74	Effect of Temperature on the Dynamic Mechanical Behaviors of Zrâ€Based Metallic Glass Reinforced Porous Tungsten Matrix Composite. Advanced Engineering Materials, 2012, 14, 439-444.	3.5	7
75	Effect of the metallic glass volume fraction on the mechanical properties of Zr-based metallic glass reinforced with porous W composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 152-158.	5.6	7
76	A rapid route for synthesizing Ti-(AlxTiy/UFG Al) core-multishell structured particles reinforced Al matrix composite with promising mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 61-64.	5.6	7
77	Bimodal grain structure effect on the static and dynamic mechanical properties of transparent polycrystalline magnesium aluminate (spinel). Ceramics International, 2019, 45, 20362-20367.	4.8	7
78	Microstructure and mechanical properties of a novel high-density steel having high tungsten content. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141797.	5.6	7
79	Characterization of highly (117)-oriented Bi 3.25 La 0.75 Ti 3 O 12 thin films prepared by rf-magnetron sputtering technique. Solid State Communications, 2018, 278, 31-35.	1.9	6
80	Phase Diagram of Subâ€CHz Electricâ€Fieldâ€Induced Polarization Oscillation. Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100416.	2.4	6
81	Effect of particle size on dynamic mechanical behaviors of W particles/Zr-based bulk metallic glass composites. Journal of Alloys and Compounds, 2021, 885, 160545.	5.5	6
82	Microstructures and mechanical properties of FeCoNi(MoW) high-entropy alloys. Materials Letters, 2022, 308, 131250.	2.6	6
83	Factors affecting the mechanical properties of ultra-high-strength bainitic steel containing W and 0. 33 mass% C. Journal of Iron and Steel Research International, 2016, 23, 289-296.	2.8	5
84	Simultaneously improved strength and toughness of hot-rolled brick-and-mortar TiNi/Ti2Ni intermetallic composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 815, 141302.	5.6	5
85	Lamellar Pearlite as an Initial Microstructure for Austenite Reversion Treatment. Journal of Materials Engineering and Performance, 2021, 30, 1330-1339.	2.5	5
86	A rapid route to improve the mechanical properties of the aged high Co–Ni steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 834, 142612.	5.6	5
87	Deformation and fracture mechanism of Ti-6Al-4V target at high and hyper velocity impact. International Journal of Impact Engineering, 2022, 169, 104312.	5.0	5
88	Enhancement of La addition on glass forming ability and thermal stability of Al 85 Ni 7 Er 8â^'x La x (x =) Tj ETQq	0 0 0 rgBT 3.1 rgBT	/Qverlock 10

89	Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite. Journal of Materials Engineering and Performance, 2018, 27, 1040-1046.	2.5	4
90	The response of yttrium aluminum garnet (YAG) grains and grain boundaries to nanoindentation. Journal of Materials Science, 2018, 53, 16198-16206.	3.7	4

6

#	Article	IF	CITATIONS
91	Static recrystallization of transparent polycrystalline yttrium aluminum garnet (YAG). Scripta Materialia, 2019, 173, 37-40.	5.2	4
92	Corrosion behaviour of NiCrFeAl-hBN seal coatings in oxidation environments at a high temperature. Rare Metals, 2021, 40, 212-218.	7.1	4
93	Achieving high performance in (NiTi2 +†TiC)/Ti composites with network architecture via reaction interface design. Journal of Alloys and Compounds, 2022, 925, 166230.	5.5	4
94	Microstructures and mechanical properties of bulk nanocrystalline silver fabricated by spark plasma sintering. Journal of Materials Research, 2016, 31, 2223-2232.	2.6	3
95	Ballistic performance and damage characteristics of chemical vapor infiltration quasi 3D-Cf/SiC composites. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 118-122.	1.0	3
96	Preparation and properties of W–Cu–Zn alloy with low W–W contiguity. Rare Metals, 2016, 35, 242-248.	7.1	3
97	Effect of prestrain on tensile property of TiNif/Mg composite. Materials Science and Technology, 2019, 35, 2243-2251.	1.6	3
98	An Evaluation of the Microstructure and Microhardness in an Al–Zn–Mg Alloy Processed by ECAP and Postâ€ECAP Heat Treatments. Advanced Engineering Materials, 2020, 22, 1901040.	3.5	3
99	Achieving an excellent combination of strength and plasticity in a low carbon steel through dynamic plastic deformation and subsequent annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 842, 143051.	5.6	3
100	Effect of tungsten content on dynamic compressive properties of borosilicate glass/tungsten composites at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 604-609.	5.6	2
101	Crystallization evolution and ferroelectric behavior of Bi3.25La0.75Ti3O12-based thin films prepared by rf-magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2019, 30, 8974-8979.	2.2	2
102	Microstructure and mechanical properties of a Cr–Ni–W–Mo steel processed by thermo-mechanical controlled processing. Journal of Iron and Steel Research International, 2021, 28, 713-721.	2.8	2
103	Processing, microstructure and mechanical properties of Ni1.5CoFeCu0.8Al0.2V0.5 high entropy alloy matrix composites reinforced by in-situ synthesized vanadium carbides. Materials Chemistry and Physics, 2021, 271, 124934.	4.0	2
104	Structural designation and mechanical properties of TiNi/Ti2Ni laminated composites. Journal of Physics: Conference Series, 2020, 1507, 062010.	0.4	1
105	High-temperature damage-tolerance of a hot-rolled brick-and-mortar Ti2Ni/TiNi composite. Materials Letters, 2022, 323, 132555.	2.6	1
106	Failure Mode of Ductile Hole Formation in Thick Ti–6Al–4V Targets Having Equiaxed and Lamellar Microstructures. , 2018, , 493-504.		0
107	Tensile properties of tungsten/glass composites at elevated temperatures. Materials Chemistry and Physics, 2021, 259, 124012.	4.0	0