Ikuo Shoji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2744576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hepatitis C Virus-Induced ROS/JNK Signaling Pathway Activates the E3 Ubiquitin Ligase Itch to Promote the Release of HCV Particles via Polyubiquitylation of VPS4A. Journal of Virology, 2022, 96, JVI0181121.	1.5	9
2	The kinesin KIF4 mediates HBV/HDV entry through the regulation of surface NTCP localization and can be targeted by RXR agonists in vitro. PLoS Pathogens, 2022, 18, e1009983.	2.1	5
3	Molecular epidemiology and genetic diversity of norovirus infection in children hospitalized with acute gastroenteritis in East Java, Indonesia in 2015–2019. Infection, Genetics and Evolution, 2021, 88, 104703.	1.0	14
4	Prevalence and Distribution of Rotavirus Genotypes Among Children With Acute Gastroenteritis in Areas Other Than Java Island, Indonesia, 2016–2018. Frontiers in Microbiology, 2021, 12, 672837.	1.5	5
5	HERC5 E3 ligase mediates ISGylation of hepatitis B virus X protein to promote viral replication. Journal of General Virology, 2021, 102, .	1.3	7
6	The Role of Chaperone-Mediated Autophagy in Hepatitis C Virus-Induced Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 796664.	1.8	7
7	NS5A-ISGylation via Lysine 26 Has a Critical Role for Efficient Propagation of Hepatitis C Virus Genotype 2a. Kobe Journal of Medical Sciences, 2021, 67, E38-E47.	0.2	0
8	ISGylation of Hepatitis C Virus NS5A Protein Promotes Viral RNA Replication via Recruitment of Cyclophilin A. Journal of Virology, 2020, 94, .	1.5	15
9	G2P[4] rotavirus outbreak in Belu, East Nusa Tenggara Province, Indonesia, 2018. Journal of Infection and Public Health, 2020, 13, 1592-1594.	1.9	4
10	Predominance of norovirus GI.4 from children with acute gastroenteritis in Jambi, Indonesia, 2019. Journal of Medical Virology, 2020, 92, 3165-3172.	2.5	5
11	Cytosolic DNAâ€sensing immune response and viral infection. Microbiology and Immunology, 2019, 63, 51-64.	0.7	58
12	Molecular Epidemiology and Clinical Features of Rotavirus Infection Among Pediatric Patients in East Java, Indonesia During 2015–2018: Dynamic Changes in Rotavirus Genotypes From Equine-Like G3 to Typical Human G1/G3. Frontiers in Microbiology, 2019, 10, 940.	1.5	27
13	Improvement of Rotavirus Genotyping Method by Using the Semi-Nested Multiplex-PCR With New Primer Set. Frontiers in Microbiology, 2019, 10, 647.	1.5	32
14	Post-vaccinated asymptomatic rotavirus infections: A community profile study of children in Surabaya, Indonesia. Journal of Infection and Public Health, 2019, 12, 625-629.	1.9	14
15	Peroxiredoxin 1, a Novel HBx-Interacting Protein, Interacts with Exosome Component 5 and Negatively Regulates Hepatitis B Virus (HBV) Propagation through Degradation of HBV RNA. Journal of Virology, 2019, 93, .	1.5	30
16	Hepatitis C Virus NS5A Protein Promotes the Lysosomal Degradation of Hepatocyte Nuclear Factor $1 \hat{l} \pm$ via Chaperone-Mediated Autophagy. Journal of Virology, 2018, 92, .	1.5	20
17	Equine-like G3 rotavirus strains as predominant strains among children in Indonesia in 2015–2016. Infection, Genetics and Evolution, 2018, 61, 224-228.	1.0	52
18	Occurrence of norovirus infection in an asymptomatic population in Indonesia. Infection, Genetics and Evolution, 2017, 55, 1-7.	1.0	25

#	Article	IF	CITATIONS
19	Unconjugated interferonâ€stimulated gene 15 specifically interacts with the hepatitis C virus NS5A protein via domain I. Microbiology and Immunology, 2017, 61, 287-292.	0.7	9
20	TRIM32-Cytoplasmic-Body Formation Is an ATP-Consuming Process Stimulated by HSP70 in Cells. PLoS ONE, 2017, 12, e0169436.	1.1	6
21	Interaction of the hepatitis B virus X protein with the lysine methyltransferase SET and MYND domainâ€containing 3 induces activator protein 1 activation. Microbiology and Immunology, 2016, 60, 17-25.	0.7	22
22	TRC8-dependent degradation of hepatitis C virus immature core protein regulates viral propagation and pathogenesis. Nature Communications, 2016, 7, 11379.	5.8	45
23	Hepatitis C virus NS5A protein interacts with lysine methyltransferase SET and MYND domainâ€containing 3 and induces activator protein 1 activation. Microbiology and Immunology, 2016, 60, 407-417.	0.7	7
24	Physical and functional interaction between hepatitis C virus NS5A protein and ovarian tumor protein deubiquitinase 7B. Microbiology and Immunology, 2015, 59, 466-476.	0.7	10
25	A single-amino-acid mutation in hepatitis C virus NS5A disrupts physical and functional interaction with the transcription factor HNF-11±. Journal of General Virology, 2015, 96, 2200-2205.	1.3	8
26	HCV upregulates Bim through the ROS/JNK signalling pathway, leading to Bax-mediated apoptosis. Journal of General Virology, 2015, 96, 2670-2683.	1.3	23
27	Induction of Cell-Mediated Immune Responses in Mice by DNA Vaccines That Express Hepatitis C Virus NS3 Mutants Lacking Serine Protease and NTPase/RNA Helicase Activities. PLoS ONE, 2014, 9, e98877.	1.1	8
28	Antiviral activity of extracts from <i>Morinda citrifolia</i> leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus. Microbiology and Immunology, 2014, 58, 188-194.	0.7	57
29	Antiâ€hepatitis C virus compounds obtained from <i>Clycyrrhiza uralensi</i> s and other <i>Clycyrrhiza</i> species. Microbiology and Immunology, 2014, 58, 180-187.	0.7	117
30	Nitrosative Stress Induces Peroxiredoxin 1 Ubiquitination During Ischemic Insult <i>via</i> E6AP Activation in Endothelial Cells Both <i>In Vitro</i> and <i>In Vivo</i> . Antioxidants and Redox Signaling, 2014, 21, 1-16.	2.5	51
31	Polymorphisms of the core, NS3, and NS5A proteins of hepatitis C virus genotype 1b associate With development of hepatocellular carcinoma. Hepatology, 2013, 58, 555-563.	3.6	28
32	Antiviral activities of Indonesian medicinal plants in the East Java region against hepatitis C virus. Virology Journal, 2013, 10, 259.	1.4	51
33	14-3-3 proteins sequester a pool of soluble TRIM32 ubiquitin ligase to repress autoubiquitination and cytoplasmic body formation. Journal of Cell Science, 2013, 126, 2014-26.	1.2	33
34	Hepatitis C Virus NS3/4A Protease Inhibits Complement Activation by Cleaving Complement Component 4. PLoS ONE, 2013, 8, e82094.	1.1	14
35	Hepatitis C Virus Infection Suppresses GLUT2 Gene Expression via Downregulation of Hepatocyte Nuclear Factor 1α. Journal of Virology, 2012, 86, 12903-12911.	1.5	29
36	Generation of a recombinant reporter hepatitis C virus useful for the analyses of virus entry, intra-cellular replication and virion production. Microbes and Infection, 2012, 14, 69-78.	1.0	5

#	Article	IF	CITATIONS
37	NS5A Sequence Heterogeneity of Hepatitis C Virus Genotype 4a Predicts Clinical Outcome of Pegylated-Interferon–Ribavirin Therapy in Egyptian Patients. Journal of Clinical Microbiology, 2012, 50, 3886-3892.	1.8	17
38	Polymorphisms of Hepatitis C Virus Non-Structural Protein 5A and Core Protein and Clinical Outcome of Pegylated-Interferon/Ribavirin Combination Therapy. Intervirology, 2012, 55, 1-11.	1.2	25
39	Molecular Mechanism of Hepatitis C Virus-Induced Glucose Metabolic Disorders. Frontiers in Microbiology, 2012, 2, 278.	1.5	18
40	Prediction of response to pegylated interferon/ribavirin combination therapy for chronic hepatitis C genotype 1b and high viral load. Journal of Gastroenterology, 2012, 47, 1143-1151.	2.3	14
41	A point mutation at Asnâ€534 that disrupts a conserved <i>N</i> â€glycosylation motif of the E2 glycoprotein of hepatitis C virus markedly enhances the sensitivity to antibody neutralization. Journal of Medical Virology, 2012, 84, 229-234.	2.5	2
42	Sequence Heterogeneity in NS5A of Hepatitis C Virus Genotypes 2a and 2b and Clinical Outcome of Pegylated-Interferon/Ribavirin Therapy. PLoS ONE, 2012, 7, e30513.	1.1	19
43	HCV NS5A Protein Containing Potential Ligands for Both Src Homology 2 and 3 Domains Enhances Autophosphorylation of Src Family Kinase Fyn in B Cells. PLoS ONE, 2012, 7, e46634.	1.1	10
44	Roles of the two distinct proteasome pathways in hepatitis C virus infection. World Journal of Virology, 2012, 1, 44.	1.3	16
45	Hepatitis C Virus Infection Promotes Hepatic Gluconeogenesis through an NS5A-Mediated, FoxO1-Dependent Pathway. Journal of Virology, 2011, 85, 8556-8568.	1.5	84
46	Sequence heterogeneity of NS5A and core proteins of hepatitis C virus and virological responses to pegylated-interferon/ribavirin combination therapy. Microbiology and Immunology, 2011, 55, 418-426.	0.7	17
47	Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein. Virology, 2011, 410, 38-47.	1.1	65
48	Natural Product-Like Macrocyclic N-Methyl-Peptide Inhibitors against a Ubiquitin Ligase Uncovered from a Ribosome-Expressed De Novo Library. Chemistry and Biology, 2011, 18, 1562-1570.	6.2	274
49	Autoimmune Thrombocytopenic Purpura during Pegylated Interferon .ALPHA. Treatment for Chronic Hepatitis C. Internal Medicine, 2010, 49, 1119-1122.	0.3	6
50	Involvement of PA28 \hat{I}^3 in the propagation of hepatitis C virus. Hepatology, 2010, 52, 411-420.	3.6	42
51	E6AP ubiquitin ligase mediates ubiquitinâ€dependent degradation of peroxiredoxin 1. Journal of Cellular Biochemistry, 2010, 111, 676-685.	1.2	20
52	Secondary structure of the aminoâ€ŧerminal region of HCV NS3 and virological response to pegylated interferon plus ribavirin therapy for chronic hepatitis C. Journal of Medical Virology, 2010, 82, 1364-1370.	2.5	7
53	17β-estradiol inhibits the production of infectious particles of hepatitis C virus. Microbiology and Immunology, 2010, 54, 684-690.	0.7	54
54	Double-Filtration Plasmapheresis plus IFN for HCV-1b Patients with Non-Sustained Virological Response to Previous Combination Therapy: Early Viral Dynamics. Intervirology, 2010, 53, 44-48.	1.2	4

#	Article	IF	CITATIONS
55	Outcome and Early Viral Dynamics with Viral Mutation in PEG-IFN/RBV Therapy for Chronic Hepatitis in Patients with High Viral Loads of Serum HCV RNA Genotype 1b. Intervirology, 2010, 53, 49-54.	1.2	8
56	Analysis of neutralizing antibodies against hepatitis C virus in patients who were treated with pegylated-interferon plus ribavirin. Kobe Journal of Medical Sciences, 2010, 56, E60-6.	0.2	5
57	Proteasomal Turnover of Hepatitis C Virus Core Protein Is Regulated by Two Distinct Mechanisms: a Ubiquitin-Dependent Mechanism and a Ubiquitin-Independent but PA28Î ³ -Dependent Mechanism. Journal of Virology, 2009, 83, 2389-2392.	1.5	57
58	Involvement of Creatine Kinase B in Hepatitis C Virus Genome Replication through Interaction with the Viral NS4A Protein. Journal of Virology, 2009, 83, 5137-5147.	1.5	42
59	Efficient production of infectious hepatitis C virus with adaptive mutations in cultured hepatoma cells. Journal of General Virology, 2009, 90, 1681-1691.	1.3	46
60	ldentification of annexin A1 as a novel substrate for E6APâ€mediated ubiquitylation. Journal of Cellular Biochemistry, 2009, 106, 1123-1135.	1.2	42
61	Single-point mutations of the M protein of a measles virus variant obtained from a patient with subacute sclerosing panencephalitis critically affect solubility and subcellular localization of the M protein and cell-free virus production. Microbes and Infection, 2009, 11, 467-475.	1.0	15
62	HCV replication suppresses cellular glucose uptake through down-regulation of cell surface expression of glucose transporters. Journal of Hepatology, 2009, 50, 883-894.	1.8	70
63	Dynamic behavior of hepatitis C virus quasispecies in a long-term culture of the three-dimensional radial-flow bioreactor system. Journal of Virological Methods, 2008, 148, 174-181.	1.0	8
64	Hepatitis C Virus Infection Induces Apoptosis through a Bax-Triggered, Mitochondrion-Mediated, Caspase 3-Dependent Pathway. Journal of Virology, 2008, 82, 10375-10385.	1.5	150
65	Virological characterization of the hepatitis C virus JFH-1 strain in lymphocytic cell lines. Journal of General Virology, 2008, 89, 1587-1592.	1.3	16
66	E6AP Ubiquitin Ligase Mediates Ubiquitylation and Degradation of Hepatitis C Virus Core Protein. Journal of Virology, 2007, 81, 1174-1185.	1.5	108
67	Molecular biology of hepatitis C virus. Journal of Gastroenterology, 2007, 42, 411-423.	2.3	98
68	Proteomic Profiling of Lipid Droplet Proteins in Hepatoma Cell Lines Expressing Hepatitis C Virus Core Protein. Journal of Biochemistry, 2006, 139, 921-930.	0.9	146
69	Production of infectious hepatitis C virus particles in three-dimensional cultures of the cell line carrying the genome-length dicistronic viral RNA of genotype 1b. Virology, 2006, 351, 381-392.	1.1	42
70	Outbreak of hepatitis C virus infection in an outpatient clinic. Journal of Gastroenterology and Hepatology (Australia), 2005, 20, 1087-1093.	1.4	7
71	Role of the DExH Motif of the Japanese Encephalitis Virus and Hepatitis C Virus NS3 Proteins in the ATPase and RNA Helicase Activities. Virology, 2000, 273, 316-324.	1.1	25
72	Cdc42 and Rac1 Regulate the Interaction of IQGAP1 with β-Catenin. Journal of Biological Chemistry, 1999, 274, 26044-26050.	1.6	205

#	Article	IF	CITATIONS
73	Identification of the Canarypox Virus Thymidine Kinase Gene and Insertion of Foreign Genes. Virology, 1999, 256, 280-290.	1.1	21
74	Internal Processing of Hepatitis C Virus NS3 Protein. Virology, 1999, 254, 315-323.	1.1	33
75	Role of IQCAP1, a Target of the Small GTPases Cdc42 and Rac1, in Regulation of E-Cadherin- Mediated Cell-Cell Adhesion. , 1998, 281, 832-835.		454
76	Regulation of Cross-linking of Actin Filament by IQGAP1, a Target for Cdc42. Journal of Biological Chemistry, 1997, 272, 29579-29583.	1.6	184
77	Proteolytic activity of NS3 serine proteinase of hepatitis C virus efficiently expressed inescherichia coli. Hepatology, 1995, 22, 1648-1655.	3.6	28
78	Carcinoma of the gallâ€bladder arising in adenomyomatosis. Pathology International, 1993, 43, 82-85.	0.6	10
79	Kinetic analysis of the binding of guanine nucleotide to bovine brain smg p25A. Biochemical and Biophysical Research Communications, 1989, 162, 273-281.	1.0	30