Ian R Gentle

List of Publications by Citations

Source: https://exaly.com/author-pdf/274445/ian-r-gentle-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 163 38 7,910 h-index g-index citations papers 5.98 8,732 7.8 172 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
163	Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. <i>ACS Nano</i> , 2009 , 3, 1745-52	16.7	1355
162	Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. <i>ACS Nano</i> , 2013 , 7, 5367-75	16.7	670
161	CarbonBulfur composites for LiB batteries: status and prospects. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9382	13	664
160	A flexible nanostructured sulphurdarbon nanotube cathode with high rate performance for Li-S batteries. <i>Energy and Environmental Science</i> , 2012 , 5, 8901	35.4	422
159	Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. <i>Chemistry - A European Journal</i> , 2012 , 18, 5345-51	4.8	317
158	A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 8703-10	3.6	258
157	Role of semiconductivity and ion transport in the electrical conduction of melanin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 8943-7	11.5	252
156	Morphology of all-solution-processed "bilayer" organic solar cells. <i>Advanced Materials</i> , 2011 , 23, 766-70	24	208
155	Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. <i>Energy Storage Materials</i> , 2019 , 18, 289-310	19.4	159
154	A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. <i>Nature Communications</i> , 2017 , 8, 13990	17.4	144
153	The structures of Langmuir-Blodgett films of fatty acids and their salts. <i>Advances in Colloid and Interface Science</i> , 2001 , 91, 163-219	14.3	123
152	Issues in determining factors influencing bacterial attachment: a review using the attachment of Escherichia coli to abiotic surfaces as an example. <i>Letters in Applied Microbiology</i> , 2009 , 49, 1-7	2.9	122
151	Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6596-6615	13	115
150	A Discussion on the Activity Origin in Metal-Free Nitrogen-Doped Carbons For Oxygen Reduction Reaction and their Mechanisms. <i>ChemSusChem</i> , 2015 , 8, 2772-88	8.3	97
149	Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. <i>Electrochemistry Communications</i> , 2010 , 12, 1423-1427	5.1	74
148	A water-dielectric capacitor using hydrated graphene oxide film. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21085		66
147	Hydration-controlled X-band EPR spectroscopy: a tool for unravelling the complexities of the solid-state free radical in eumelanin. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 4965-72	3.4	66

(2017-2009)

146	Solid-state dendrimer sensors: probing the diffusion of an explosive analogue using neutron reflectometry. <i>Langmuir</i> , 2009 , 25, 12800-5	4	63
145	Tubular Titania Nanostructures via Layer-by-Layer Self-Assembly. <i>Advanced Functional Materials</i> , 2007 , 17, 2600-2605	15.6	62
144	The examination of graphene oxide for rechargeable lithium storage as a novel cathode material. Journal of Materials Chemistry A, 2013 , 1, 3607	13	61
143	Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films. <i>Nature Communications</i> , 2015 , 6, 8240	17.4	60
142	Electroactive cellulose-supported graphene oxide interlayers for LiB batteries. <i>Carbon</i> , 2015 , 93, 611-61	1910.4	59
141	On the origin of electrical conductivity in the bio-electronic material melanin. <i>Applied Physics Letters</i> , 2012 , 100, 093701	3.4	58
140	Biomimetic SnP Anchored on Carbon Nanotubes as an Anode for High-Performance Sodium-Ion Batteries. <i>ACS Nano</i> , 2020 , 14, 8826-8837	16.7	56
139	Controlling Hierarchy in Solution-processed Polymer Solar Cells Based on Crosslinked P3HT. <i>Advanced Energy Materials</i> , 2013 , 3, 105-112	21.8	54
138	Structural Origin of the Activity in Mn3O4-Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction. <i>ChemSusChem</i> , 2015 , 8, 3331-9	8.3	52
137	The role of functional materials to produce high areal capacity lithium sulfur battery. <i>Journal of Energy Chemistry</i> , 2020 , 42, 195-209	12	50
136	Nanoassembly of biocompatible microcapsules for urease encapsulation and their use as biomimetic reactors. <i>Chemical Communications</i> , 2006 , 2150-2	5.8	49
135	Mesoporous silica templated biolabels with releasable fluorophores for immunoassays. <i>Analytical Chemistry</i> , 2008 , 80, 5401-6	7.8	48
134	Possible dissolution pathways participating in the Mg corrosion reaction. <i>Corrosion Science</i> , 2015 , 92, 173-181	6.8	47
133	Revisiting oxygen reduction reaction on oxidized and unzipped carbon nanotubes. <i>Carbon</i> , 2015 , 81, 295-304	10.4	47
132	Effects of fluorination on iridium(III) complex phosphorescence: magnetic circular dichroism and relativistic time-dependent density functional theory. <i>Inorganic Chemistry</i> , 2012 , 51, 2821-31	5.1	45
131	Dependence of LiNO 3 decomposition on cathode binders in LiB batteries. <i>Journal of Power Sources</i> , 2015 , 288, 13-19	8.9	43
130	Gaseous adsorption in melanins: hydrophilic biomacromolecules with high electrical conductivities. <i>Langmuir</i> , 2010 , 26, 412-6	4	43
129	Carboxymethyl cellulose binders enable high-rate capability of sulfurized polyacrylonitrile cathodes for LiB batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5460-5465	13	41

128	Investigating Morphology and Stability of Fac-tris (2-phenylpyridyl)iridium(III) Films for OLEDs. <i>Advanced Functional Materials</i> , 2011 , 21, 2225-2231	15.6	41
127	Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. <i>Nature Communications</i> , 2021 , 12, 52	17.4	40
126	Characterisation of curli production, cell surface hydrophobicity, autoaggregation and attachment behaviour of Escherichia coli O157. <i>Current Microbiology</i> , 2010 , 61, 157-62	2.4	39
125	Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature. <i>Carbon</i> , 2012 , 50, 3333-3341	10.4	38
124	Relativistic effects in a phosphorescent Ir(III) complex. <i>Physical Review B</i> , 2011 , 83,	3.3	38
123	Reduction-induced surface amorphization enhances the oxygen evolution activity in Co3O4. <i>RSC Advances</i> , 2015 , 5, 27823-27828	3.7	36
122	Engineering dielectric constants in organic semiconductors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3736-3747	7.1	35
121	Two-Dimensional Titanium Carbonitride Mxene for High-Performance Sodium Ion Batteries. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6854-6863	5.6	35
120	Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors. <i>Advanced Energy Materials</i> , 2018 , 8, 1702941	21.8	34
119	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Light-Emitting Diode Films. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8402-8406	16.4	33
118	Correlation of diffusion and performance in sequentially processed P3HT/PCBM heterojunction films by time-resolved neutron reflectometry. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2593	7.1	33
117	Second hyperpolarizabilities and static and optical-frequency polarizability anisotropies of benzene, 1,3,5-trifluorobenzene and hexafluorobenzene. <i>The Journal of Physical Chemistry</i> , 1989 , 93, 7740-7744		33
116	Functions in cooperation for enhanced oxygen reduction reaction: the independent roles of oxygen and nitrogen sites in metal-free nanocarbon and their functional synergy. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3239-3248	13	31
115	Time-resolved neutron reflectometry and photovoltaic device studies on sequentially deposited PCDTBT-fullerene layers. <i>Langmuir</i> , 2014 , 30, 11474-84	4	31
114	Diffusionthe hidden menace in organic optoelectronic devices. Advanced Materials, 2012, 24, 822-6	24	31
113	Sn4P3@Porous carbon nanofiber as a self-supported anode for sodium-ion batteries. <i>Journal of Power Sources</i> , 2020 , 461, 228116	8.9	31
112	Synergy of nanoconfinement and surface oxygen in recrystallization of sulfur melt in carbon nanocapsules and the related LiB cathode properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6439	13	30
111	Multilayer nanostructured porphyrin arrays constructed by layer-by-layer self-assembly. <i>Langmuir</i> , 2009 , 25, 9873-8	4	30

(2011-2020)

110	Separator coatings as efficient physical and chemical hosts of polysulfides for high-sulfur-loaded rechargeable lithiumBulfur batteries. <i>Journal of Energy Chemistry</i> , 2020 , 44, 51-60	12	30	
109	Structural Studies of Copper(II)Amine Terminated Dendrimer Complexes by EXAFS. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 20130-20136	3.4	29	
108	Dependence of Organic Interlayer Diffusion on Glass-Transition Temperature in OLEDs. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 14153-14161	9.5	28	
107	The Evaporation Resistance of Mixed Monolayers of Octadecanol and Cholesterol. <i>Journal of Colloid and Interface Science</i> , 1998 , 207, 258-263	9.3	28	
106	The structure of mixed monolayer films of DPPC and hexadecanol. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2000 , 171, 217-224	5.1	28	
105	Reversible alkali-metal reduction of C60 in liquid ammonia; first observation of near-infrared spectrum of C5B0. <i>Journal of the Chemical Society Chemical Communications</i> , 1993 , 525		28	
104	Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films. <i>Advanced Materials</i> , 2020 , 32, e1905785	24	28	
103	Atomic force microscopy studies of Bowen Basin coal macerals. <i>Fuel</i> , 1997 , 76, 1519-1526	7.1	27	
102	Host-Free Blue Phosphorescent Dendrimer Organic Light-Emitting Field-Effect Transistors and Equivalent Light-Emitting Diodes: A Comparative Study. <i>ACS Photonics</i> , 2017 , 4, 754-760	6.3	26	
101	The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9845-53	3.6	26	
100	Self-Assembly of AminoThiols via GoldNitrogen Links and Consequence for in situ Elongation of Molecular Wires on Surface-Modified Electrodes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 4200-4208	3.8	26	
99	Interfacial behavior of tetrapyridylporphyrin monolayer arrays. <i>Langmuir</i> , 2006 , 22, 681-6	4	26	
98	Controlling the structure of transparent Langmuir B lodgett films for nonlinear optical applications. <i>Journal of Materials Chemistry</i> , 1996 , 6, 137-141		25	
97	Biocompatible polypeptide microcapsules via templating mesoporous silica spheres. <i>Journal of Colloid and Interface Science</i> , 2009 , 333, 341-5	9.3	23	
96	Functional molecular wires. Physical Chemistry Chemical Physics, 2008, 10, 1859-66	3.6	23	
95	Multifunctional Effects of Sulfonyl-Anchored, Dual-Doped Multilayered Graphene for High Areal Capacity Lithium Sulfur Batteries. <i>ACS Central Science</i> , 2019 , 5, 1946-1958	16.8	22	
94	Impact of Dimerization on Phase Separation and Crystallinity in Bulk Heterojunction Films Containing Non-Fullerene Acceptors. <i>Macromolecules</i> , 2016 , 49, 4404-4415	5.5	21	
93	Solid State Dendrimer Sensors: Effect of Dendrimer Dimensionality on Detection and Sequestration of 2,4-Dinitrotoluene. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18366-18371	3.8	21	

92	Grazing Incidence X-ray Diffraction Studies of Thin Films Using an Imaging Plate Detection System. Langmuir, 1996 , 12, 774-777	21
91	Field-gradient-induced birefringence in dilute solutions of furan, thiophen and selenophen in cyclohexane. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1983 , 79, 539	21
90	Deuteration of molecules for neutron reflectometry on organic light-emitting diode thin films. Tetrahedron Letters, 2012, 53, 931-935	20
89	Long-chain solid organic polysulfide cathode for high-capacity secondary lithium batteries. <i>Energy Storage Materials</i> , 2018 , 12, 30-36	. 20
88	Determination of fullerene scattering length density: a critical parameter for understanding the fullerene distribution in bulk heterojunction organic photovoltaic devices. <i>Langmuir</i> , 2014 , 30, 1410-5	19
87	Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 884-890	19
86	Dispersible percolating carbon nano-electrodes for improvement of polysulfide utilization in LiB batteries. <i>Carbon</i> , 2015 , 93, 161-168	. 19
85	Diffusion of nitroaromatic vapours into fluorescent dendrimer films for explosives detection. Sensors and Actuators B: Chemical, 2015, 210, 550-557	19
84	Electron-beam writing of deoxygenated micro-patterns on graphene oxide film. <i>Carbon</i> , 2015 , 95, 738-745.4	. 18
83	Enhanced photocatalytic properties of reusable TiO2-loaded natural porous minerals in dye wastewater purification. <i>Powder Technology</i> , 2016 , 302, 426-433	17
82	Improved stability of non-ITO stacked electrodes for large area flexible organic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 130, 182-190	17
81	CsgA production by Escherichia coli O157:H7 alters attachment to abiotic surfaces in some growth environments. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 7339-44	17
80	Cyclic Enones as Substrates in the MoritaBaylisHillman Reaction: Surfactant Interactions, Scope and Scalability with an Emphasis on Formaldehyde. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 1148-1154	16
79	Specular and Off-Specular Neutron Reflectivity of a Low Molecular Weight Polystyrene Surfactant at the Air-Water Interface. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 5935-5942	16
78	The structural impact of water sorption on device-quality melanin thin films. Soft Matter, 2017, 13, 3954-306	5 15
77	Trilayer Nanomesh Films with Tunable Wettability as Highly Transparent, Flexible, and Recyclable Electrodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2002556	15
76	Impact of Micropores and Dopants to Mitigate Lithium Polysulfides Shuttle over High Surface Area of ZIF-8 Derived Nanoporous Carbons. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5523-5532	14
75	Conformational changes in SP-B as a function of surface pressure. <i>Biophysical Journal</i> , 2003 , 85, 2624-322.9	14

(2016-1989)

74	Second hyperpolarizability and static polarizability anisotropy of carbon dioxide. <i>The Journal of Physical Chemistry</i> , 1989 , 93, 3035-3038		14	
73	Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells. <i>ACS Applied Materials & Discrete Solar Cells.</i> 42986-42995	9.5	13	
72	The value of mixed conduction for oxygen electroreduction on graphenethitosan composites. <i>Carbon</i> , 2014 , 73, 234-243	10.4	13	
71	Temperature and pressure dependence of the electrooptical Kerr effect of sulfur dioxide. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 3434-3437		13	
70	Diffusion at Interfaces in OLEDs Containing a Doped Phosphorescent Emissive Layer. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600184	4.6	13	
69	Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing. <i>ChemPhysChem</i> , 2016 , 17, 3350-3353	3.2	12	
68	Clustering of High Molecular Weight PCDTBT in Bulk-Heterojunction Casting Solutions. <i>Macromolecules</i> , 2015 , 48, 8331-8336	5.5	11	
67	Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. <i>Nano Energy</i> , 2020 , 75, 105009	17.1	11	
66	Assessing the sensing limits of fluorescent dendrimer thin films for the detection of explosive vapors. <i>Sensors and Actuators B: Chemical</i> , 2017 , 239, 727-733	8.5	11	
65	Improved spreading rates for monolayers applied as emulsions to reduce water evaporation. <i>Journal of Colloid and Interface Science</i> , 2011 , 357, 239-42	9.3	11	
64	Time-resolved grazing-incidence diffraction studies of thin films using an imaging-plate camera and focusing monochromator. <i>Journal of Synchrotron Radiation</i> , 1998 , 5, 107-11	2.4	11	
63	Sc, Ge co-doping NASICON boosts solid-state sodium ion batteries' performance. <i>Energy Storage Materials</i> , 2021 , 40, 282-291	19.4	11	
62	Surface roughness of stainless steel influences attachment and detachment of Escherichia coli O157. <i>Journal of Food Protection</i> , 2011 , 74, 1359-63	2.5	10	
61	Structural Changes in Mixed Langmuir B lodgett Films upon Nanoparticle Formation. <i>Langmuir</i> , 2002 , 18, 6391-6397	4	10	
60	Self-assembled films of dimyristoylphosphatidylcholine. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 155, 69-84	5.1	10	
59	Molecular quadrupole moment and effective-quadrupole-centre of fluorobenzene. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1983 , 79, 529		10	
58	Thiophene dendrimer-based low donor content solar cells. <i>Applied Physics Letters</i> , 2016 , 109, 103302	3.4	10	
57	Metal l igand Complexes as Molecular Metal-Ion Reservoirs for Highly Promoted Growth of ECo(OH)2 Microplates. <i>Crystal Growth and Design</i> , 2016 , 16, 8-11	3.5	9	

56	Hydrotalcite-wrapped Co B alloy with enhanced oxygen evolution activity. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 1021-1027	11.3	9
55	Molecular packing of functionalized fluorinated lipids in Langmuir monolayers. <i>Langmuir</i> , 2010 , 26, 188	6 <u>8</u> -73	9
54	Rigid films of an anionic porphyrin and a dialkyl chain surfactant. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 5651-7	3.4	9
53	Structures of Mixed Langmuir B lodgett Films of Tetrakis(3,5-di-tert-butylphenyl)porphinatocopper(II) with Cadmium Arachidate: A Grazing Incidence Synchrotron X-ray Diffraction Study. <i>Langmuir</i> , 2000 , 16, 607-611	4	9
52	A comparative study on layered cobalt hydroxides in water oxidation. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2016 , 11, 415-423	1.3	9
51	A comparative study of V 2 O 5 modified with multi-walled carbon nanotubes and poly(3,4-ethylenedioxythiophene) for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 213, 557-564	6.7	9
50	Molecular versus exciton diffusion in fluorescence-based explosive vapour sensors. <i>Chemical Communications</i> , 2015 , 51, 17406-9	5.8	8
49	Regulating electron transfer over asymmetric low-spin Co(II) for highly selective electrocatalysis. <i>Chem Catalysis</i> , 2022 ,		8
48	Enhanced Electroactivity of Facet-Controlled Co3O4 Nanocrystals for Enzymeless Biosensing. Journal of Materials Science and Technology, 2016 , 32, 24-27	9.1	8
47	The production and verification of pristine semi-fluorinated thiol monolayers on gold. <i>Journal of Colloid and Interface Science</i> , 2012 , 370, 162-9	9.3	7
46	Focusing monochromator and imaging-plate camera for grazing-incidence diffraction studies of thin films. <i>Journal of Synchrotron Radiation</i> , 1998 , 5, 500-2	2.4	7
45	The structural characterisation of self-assembled films of dimyristoyl phosphatidylcholine: a neutron reflectivity and Brewster angle microscopy study. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2000 , 168, 13-25	5.1	7
44	Molecular Lego : non-centrosymmetric alignment within interdigitating layers. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2966-2970		7
43	Precursor Route Poly(1,4-phenylenevinylene)-Based Interlayers for Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 889-899	6.1	7
42	Benchmarking the Oxygen Reduction Electroactivity of First-Row Transition-Metal Oxide Clusters on Carbon Nanotubes. <i>ChemElectroChem</i> , 2018 , 5, 1862-1867	4.3	7
41	Influence of Dopant Concentration and Steric Bulk on Interlayer Diffusion in OLEDs. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1700872	4.6	6
40	Escherichia coli strains expressing H12 antigens demonstrate an increased ability to attach to abiotic surfaces as compared with E. coli strains expressing H7 antigens. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 119, 90-8	6	6
39	Molecular zipslevidence of the interdigitation of layers in Langmuir-Blodgett films of an optically non-linear dye and a compatible spacer. <i>Journal of Materials Chemistry</i> , 1996 , 6, 969-974		6

38	Polymer surfactant structure at the air-water interface. <i>Langmuir</i> , 1993 , 9, 646-648	4	6
37	Oxygen Electrocatalysis at Mn-O -C Hybrid Heterojunction: An Electronic Synergy or Cooperative Catalysis?. <i>ACS Applied Materials & Discrete Synergy or Cooperative Catalysis</i> ?	9.5	6
36	Enhanced Safety and Performance of High-Voltage Solid-State Sodium Battery through Trilayer, Multifunctional Electrolyte Design. <i>Energy Storage Materials</i> , 2021 , 41, 8-13	19.4	6
35	The DNA protection during starvation protein (Dps) influences attachment of Escherichia coli to abiotic surfaces. <i>Foodborne Pathogens and Disease</i> , 2011 , 8, 939-41	3.8	5
34	Structure of SP-B/DPPC mixed films studied by neutron reflectometry. <i>Biophysical Journal</i> , 2008 , 95, 4829-36	2.9	5
33	Conceptual Design of the Small Angle Scattering Beamline at the Australian Synchrotron. <i>AIP Conference Proceedings</i> , 2007 ,	О	5
32	X-ray Scattering Studies of Mixed Monolayers of Tetrakis(3,5-di-tert-butylphenyl)porphinatocopper(II) with Cadmium Arachidate at the Air/Water Interface. <i>Langmuir</i> , 2000 , 16, 7051-7055	4	5
31	Structural requirements for the cytotoxicity of the N-terminal region of HIV type 1 Nef. <i>AIDS Research and Human Retroviruses</i> , 1998 , 14, 1543-51	1.6	5
30	Interaction of Phosphotungstate Ions with Phospholipid Monolayers: A Synchrotron X-ray Study. <i>Langmuir</i> , 1995 , 11, 281-285	4	5
29	Nanosphere lithography: a versatile approach to develop transparent conductive films for optoelectronic applications <i>Advanced Materials</i> , 2022 , e2103842	24	5
28	Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors. <i>Communications Chemistry</i> , 2021 , 4,	6.3	5
27	Hole-transporting materials for low donor content organic solar cells: Charge transport and device performance. <i>Organic Electronics</i> , 2020 , 76, 105480	3.5	5
26	ZIF-8 derived hollow carbon to trap polysulfides for high performance lithium-sulfur batteries. <i>Nanoscale</i> , 2021 , 13, 11086-11092	7.7	5
25	Morphology of OLED Film Stacks Containing Solution-Processed Phosphorescent Dendrimers. <i>ACS Applied Materials & Dendrimers</i> , 2018, 10, 3848-3855	9.5	4
24	BoftIgraphene oxide-organopolysulfide nanocomposites for superior pseudocapacitive lithium storage. <i>Chinese Chemical Letters</i> , 2018 , 29, 603-605	8.1	4
23	Efficient manual Fmoc solid-phase synthesis of the N-terminal segment of surfactant protein B (SP-B(1-25)). <i>Protein and Peptide Letters</i> , 2009 , 16, 810-4	1.9	4
22	Multiple Ordered Phases in Langmuir B lodgett Films of Cadmium Arachidate at Elevated Temperatures. <i>Langmuir</i> , 2003 , 19, 4701-4706	4	4
21	X-ray Scattering Studies of Mixed Langmuir Monolayers and Langmuir B lodgett Films of a Noncentrosymmetric Porphyrin with Cadmium Arachidate. <i>Langmuir</i> , 2001 , 17, 1936-1940	4	4

20	Studies of polyethylene-coated tin oxide films on glass bottles. <i>Surface and Interface Analysis</i> , 2000 , 29, 663-670	1.5	3
19	Kerr effects, Rayleigh depolarization ratios, polarizabilities, and hyperpolarizabilities of fluorobenzene and pentafluorobenzene. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 1844-1847		3
18	Investigating charge generation in polymer:non-fullerene acceptor bulk heterojunction films. <i>Organic Electronics</i> , 2018 , 55, 177-186	3.5	2
17	Mixed thin films of a cationic amphiphilic porphyrin and n-alkanes. <i>Langmuir</i> , 2004 , 20, 6246-51	4	2
16	Bis(diethylenetriamine)mercury(II) bis(thiocyanate). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2002 , 58, m150-m151		2
15	The structure of ultrathin Langmuir-Blodgett films of cadmium behenate. <i>Journal of Chemical Physics</i> , 2005 , 123, 214705	3.9	2
14	Conformational changes in monolayers of a cationic amphiphilic porphyrin on saline subphases. <i>Journal of Porphyrins and Phthalocyanines</i> , 2002 , 06, 806-811	1.8	2
13	Non-centrosymmetric alignment of optically nonlinear dyes. Supramolecular Science, 1995 , 2, 131-134		2
12	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Light-Emitting Diode Films. <i>Angewandte Chemie</i> , 2017 , 129, 8522-8526	3.6	1
11	77-2: Invited Paper: Probing the Thermal Stability of OLEDs with Neutrons. <i>Digest of Technical Papers SID International Symposium</i> , 2017 , 48, 1129-1133	0.5	1
10	Formulation and physical characterization of microemulsions containing isotretinoin 2009,		1
9	Structure and thermal stability of Langmuir B lodgett films of barium arachidate. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2005 , 253, 65-75	5.1	1
8	Effect of dendron structure on the luminescent and charge transporting properties of solution processed dendrimer-based OLEDs. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 16033-16043	7.1	1
7	Diffusion in Organic Film Stacks Containing Solution-Processed Phosphorescent Poly(dendrimer) Dopants. <i>ACS Applied Materials & Acs Applied </i>	9.5	1
6	Stable Interfaces in a Sodium Metal-Free, Solid-State Sodium-Ion Battery with Gradient Composite Electrolyte. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 39355-39362	9.5	1
5	Effect of dendrimer surface groups on the properties of phosphorescent emissive films. <i>Organic Electronics</i> , 2021 , 99, 106321	3.5	1
4	Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing. <i>ChemPhysChem</i> , 2016 , 17, 3345-3345	3.2	
3	Applications of Synchrotron Science to Chemistry. <i>Australian Journal of Chemistry</i> , 2012 , 65, 203	1.2	

LIST OF PUBLICATIONS

2	Hybrid nanocomposite colloidal crystals via in-situ synthesis of nanoparticles within polyelectrolyte
	shell. Journal of Nanoscience and Nanotechnology. 2009 . 9. 1330-2

1.3

A statistical approach for modelling the physical process of bacterial attachment to abiotic surfaces. *Biofouling*, **2020**, 36, 1227-1242

3.3