Gorakshnath Takalkar

List of Publications by Citations

Source: https://exaly.com/author-pdf/2744406/gorakshnath-takalkar-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32 376 10 18 g-index

32 475 4.8 4.47 L-index

#	Paper	IF	Citations
32	A decade of ceria based solar thermochemical H2O/CO2 splitting cycle. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 34-60	6.7	76
31	Transition metal doped ceria for solar thermochemical fuel production. Solar Energy, 2018, 172, 204-2	116.8	44
30	Effectiveness of Ni incorporation in iron oxide crystal structure towards thermochemical CO2 splitting reaction. <i>Ceramics International</i> , 2017 , 43, 5150-5155	5.1	39
29	Nanostructured co-precipitated Ce0.9Ln0.1O2 (Ln = La, Pr, Sm, Nd, Gd, Tb, Dy, or Er) for thermochemical conversion of CO2. <i>Ceramics International</i> , 2018 , 44, 16688-16697	5.1	37
28	Combustion synthesized A0.5Sr0.5MnO3-[perovskites (where, A = La, Nd, Sm, Gd, Tb, Pr, Dy, and Y) as redox materials for thermochemical splitting of CO2. <i>Applied Surface Science</i> , 2019 , 489, 80-91	6.7	21
27	La-Based Perovskites as Oxygen-Exchange Redox Materials for Solar Syngas Production. <i>MRS Advances</i> , 2017 , 2, 3365-3370	0.7	19
26	Solar thermocatalytic conversion of CO2 using PrxSr(1日)MnO3Derovskites. <i>Fuel</i> , 2019 , 254, 115624	7.1	18
25	Thermodynamic analysis of EMISEIWater as a working pair for absorption refrigeration system. <i>Applied Thermal Engineering</i> , 2019 , 148, 787-795	5.8	18
24	Thermocatalytic splitting of CO2 using sol-gel synthesized Co-ferrite redox materials. <i>Fuel</i> , 2019 , 257, 115965	7.1	13
23	Early gas kick detection in vertical wells via transient multiphase flow modelling: A review. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 80, 103391	4.6	12
22	Sol-gel synthesized NixFe3NO4 for thermochemical conversion of CO2. <i>Applied Surface Science</i> , 2019 , 489, 693-700	6.7	9
21	Application of cobalt incorporated Iron oxide catalytic nanoparticles for thermochemical conversion of CO2. <i>Applied Surface Science</i> , 2019 , 495, 143508	6.7	9
20	Thermochemical splitting of CO2 using Co-precipitation synthesized Ce0.75Zr0.2M0.05O2-[] (M = Cr, Mn, Fe, CO, Ni, Zn) materials. <i>Fuel</i> , 2019 , 256, 115834	7.1	8
19	Application of Li-, Mg-, Ba-, Sr-, Ca-, and Sn-doped ceria for solar-driven thermochemical conversion of carbon dioxide. <i>Journal of Materials Science</i> , 2020 , 55, 11797-11807	4.3	6
18	Thermochemical CO2 splitting using a sol-gelBynthesized Mg-ferriteBased redox system. <i>International Journal of Energy Research</i> , 2019 , 43, 6983	4.5	6
17	Thermodynamic analysis of solar-driven chemical looping steam methane reforming over Cr2O3/Cr redox pair. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 10370-10380	6.7	6
16	Thermodynamic properties and performance evaluation of [EMIM] [DMP]-H2O working pair for absorption cooling cycle. <i>International Journal of Energy Research</i> , 2020 , 44, 12269-12283	4.5	4

LIST OF PUBLICATIONS

Mathematical modeling, simulation and optimization of solar thermal powered Encontech engine for desalination. <i>Solar Energy</i> , 2018 , 172, 104-115	6.8	4
Thermochemical splitting of CO2 using solution combustion synthesized lanthanumEtrontiumEnanganese perovskites. <i>Fuel</i> , 2021 , 285, 119154	7.1	4
Investigation of Zr-doped ceria for solar thermochemical valorization of CO2. <i>International Journal of Energy Research</i> , 2020 , 44, 12284-12294	4.5	3
Ni incorporation in MgFe2O4 for improved CO2-splitting activity during solar fuel production. <i>Journal of Materials Science</i> , 2020 , 55, 11086-11094	4.3	3
Co-precipitation synthesized nanostructured Ce0.9Ln0.05Ag0.05O2[materials for solar thermochemical conversion of CO2 into fuels. <i>Journal of Materials Science</i> , 2020 , 55, 9748-9761	4.3	3
Vapour liquid equilibrium of Potassium formate (Water: measurements and correlation by e-NRTL model. <i>Indian Chemical Engineer</i> , 2019 , 61, 361-373	1	2
Evaluation of redox performance of silver and transition metal-doped ternary ceria oxides for thermochemical splitting of CO2. <i>International Journal of Energy Research</i> , 2019 , 43, 3616-3627	4.5	2
Thermochemical splitting of CO2 using solution combustion synthesized LaMO3 (where, MIEICo, Fe, Mn, Ni, Al, Cr, Sr). <i>Applied Surface Science</i> , 2020 , 509, 144908	6.7	2
Comprehensive performance analysis and optimization of 1,3-dimethylimidazolylium dimethylphosphate-water binary mixture for a single effect absorption refrigeration system. <i>Frontiers in Energy</i> ,1	2.6	2
Energy and exergy analysis of parallel flow double effect H2O-[mmim][DMP] absorption refrigeration system for solar powered district cooling. <i>Case Studies in Thermal Engineering</i> , 2021 , 28, 101382	5.6	2
Thermodynamic analysis and experimental validation of multi-composition ammonia liquor absorption engine cycle for power generation. <i>International Journal of Energy Research</i> , 2020 , 44, 1243	0-4:244	3 ¹
Delivery of Immunomodulatory Microparticles in a Murine Model of Rotator Cuff Tear. <i>MRS Advances</i> , 2018 , 3, 1341-1346	0.7	1
Evacuated tube heat pipe solar collector for Encontech engine-driven reverse osmosis solar desalination. <i>International Journal of Energy Research</i> , 2020 , 44, 12460-12473	4.5	1
Energetic and exergetic performance of NH3-H2O-based absorption refrigeration cycle: effect of operating factor. <i>International Journal of Exergy</i> , 2020 , 31, 352	1.2	1
Experimental Investigation of Isothermal Vapor□iquid Equilibrium and Estimation of Excess Thermodynamic Properties (hE) of CHO2Kℍ2O from 278.15 to 423.15 K. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 1488-1500	2.8	О
	Thermochemical splitting of CO2 using solution combustion synthesized lanthanumBtrontiumthanganese perovskites. Fuel, 2021, 285, 119154 Investigation of Zr-doped ceria for solar thermochemical valorization of CO2. International Journal of Energy Research, 2020, 44, 12284-12294 Ni incorporation in MgFe2O4 for improved CO2-splitting activity during solar fuel production. Journal of Materials Science, 2020, 55, 11086-11094 Co-precipitation synthesized nanostructured Ce0.9Ln0.05Ag0.05O2thaterials for solar thermochemical conversion of CO2 into fuels. Journal of Materials Science, 2020, 55, 9748-9761 Vapour liquid equilibrium of Potassium formate Ilvater: measurements and correlation by e-NRTL model. Indian Chemical Engineer, 2019, 61, 361-373 Evaluation of redox performance of silver and transition metal-doped ternary ceria oxides for thermochemical splitting of CO2. International Journal of Energy Research, 2019, 43, 3616-3627 Thermochemical splitting of CO2 using solution combustion synthesized LaMO3 (where, MI÷ICo, Fe, Mn, Ni, Al, Cr, Sr). Applied Surface Science, 2020, 509, 144908 Comprehensive performance analysis and optimization of 1,3-dimethylimidazolylium dimethylphosphate-water binary mixture for a single effect absorption refrigeration system. Frontiers in Energy, 1 Energy and exergy analysis of parallel flow double effect H2O-[mmim] [DMP] absorption refrigeration system for solar powered district cooling. Case Studies in Thermal Engineering, 2021, 28, 101382 Thermodynamic analysis and experimental validation of multi-composition ammonia liquor absorption engine cycle for power generation. International Journal of Energy Research, 2020, 44, 1243 Delivery of Immunomodulatory Microparticles in a Murine Model of Rotator Cuff Tear. MRS Advances, 2018, 3, 1341-1346 Evacuated tube heat pipe solar collector for Encontech engine-driven reverse osmosis solar desalination. International Journal of Energy Research, 2020, 44, 12460-12473 Energetic and exergetic performance of NH3-H2O-based absorption ref	for desalination. Solar Energy, 2018, 172, 104-115 Thermochemical splitting of CO2 using solution combustion synthesized lanthanumBkrontiumthanganese perovskites. Fuel, 2021, 285, 119154 Journal of Energy Research, 2020, 44, 12284-12294 Ni incorporation in MgFe2O4 for improved CO2-splitting activity during solar fuel production. Journal of Materials Science, 2020, 55, 11086-11094 Co-precipitation synthesized nanostructured Ce0.9Ln0.05Ag0.05O2linaterials for solar thermochemical conversion of CO2 into fuels. Journal of Materials Science, 2020, 55, 9748-9761 Vapour liquid equilibrium of Potassium formate liwater: measurements and correlation by e-NRTL model. Indian Chemical Engineer, 2019, 61, 361-373 Evaluation of redox performance of silver and transition metal-doped ternary ceria oxides for thermochemical splitting of CO2. International Journal of Energy Research, 2019, 43, 3616-3627 Thermochemical splitting of CO2 using solution combustion synthesized LaMO3 (where, MIE/Co, Fe, Mn, Ni, Al, Cr, Sr). Applied Surface Science, 2020, 509, 144908 Comprehensive performance analysis and optimization of 1,3-dimethylimidazolylium dimethylphosphate-water binary mixture for a single effect absorption refrigeration system. Frontiers in Energy, 1 Energy and exergy analysis of parallel flow double effect H2O-[mmim][DMP] absorption refrigeration system for solar powered district cooling. Case Studies in Thermal Engineering, 2021, 28, 101382 Thermodynamic analysis and experimental validation of multi-composition ammonia liquor absorption engine cycle for power generation. International Journal of Energy Research, 2020, 44, 12430-12473 Pelivery of Immunomodulatory Microparticles in a Murine Model of Rotator Cuff Tear. MRS Advances, 2018, 3, 1341-1346 Evacuated tube heat pipe solar collector for Encontech engine-driven reverse osmosis solar desalination. International Journal of Energy Research, 2020, 44, 12460-12473 Experimental Investigation of Isothermal Vaporfliquid Equilibrium and Estimation of Chemical & Exper