Pedro J Alcolea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2744312/publications.pdf Version: 2024-02-01

DEDDO LAICOLEA

#	Article	IF	CITATIONS
1	Leishmania infantum UBC1 in Metacyclic Promastigotes from Phlebotomus perniciosus, a Vaccine Candidate for Zoonotic Visceral Leishmaniasis. Vaccines, 2022, 10, 231.	2.1	1
2	Stable Episomal Transfectant Leishmania infantum Promastigotes Over-Expressing the DEVH1 RNA Helicase Gene Down-Regulate Parasite Survival Genes. Pathogens, 2022, 11, 761.	1.2	1
3	New diarylsulfonamide inhibitors of Leishmania infantum amastigotes. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 16, 45-64.	1.4	3
4	Functional genomics in sand fly–derived Leishmania promastigotes. PLoS Neglected Tropical Diseases, 2019, 13, e0007288.	1.3	17
5	Quantitative RNA Analysis Using RNA-Seq. Methods in Molecular Biology, 2019, 1971, 95-108.	0.4	4
6	IL12 p35 and p40 subunit genes administered as pPAL plasmid constructs do not improve protection of pPAL-LACK vaccine against canine leishmaniasis. PLoS ONE, 2019, 14, e0212136.	1.1	8
7	An Insight into the Constitutive Proteome Throughout Leishmania donovani Promastigote Growth and Differentiation. International Microbiology, 2019, 22, 143-154.	1.1	6
8	The antibiotic resistance-free mammalian expression plasmid vector pPAL for development of third generation vaccines. Plasmid, 2019, 101, 35-42.	0.4	8
9	RNA-seq analysis reveals differences in transcript abundance between cultured and sand fly-derived Leishmania infantum promastigotes. Parasitology International, 2018, 67, 476-480.	0.6	4
10	The contribution of DNA microarray technology to gene expression profiling in Leishmania spp.: A retrospective view. Acta Tropica, 2018, 187, 129-139.	0.9	10
11	Guide RNA genes up-regulated in Leishmania infantum metacyclic promastigotes. Acta Tropica, 2018, 187, 72-77.	0.9	1
12	Omics approaches for understanding gene expression in Leishmania: clues for tackling leishmaniasis. , 2018, , .		0
13	In vitro infectivity and differential gene expression of Leishmania infantum metacyclic promastigotes: negative selection with peanut agglutinin in culture versus isolation from the stomodeal valve of Phlebotomus perniciosus. BMC Genomics, 2016, 17, 375.	1.2	19
14	Differential protein abundance in promastigotes of nitric oxideâ€sensitive and resistant <i>Leishmania chagasi</i> strains. Proteomics - Clinical Applications, 2016, 10, 1132-1146.	0.8	5
15	Rationale for selection of developmentally regulated genes as vaccine candidates against Leishmania infantum infection. Vaccine, 2016, 34, 5474-5478.	1.7	10
16	A putative <i>Leishmania</i> DNA polymerase theta protects the parasite against oxidative damage. Nucleic Acids Research, 2016, 44, 4855-4870.	6.5	16
17	Proteome profiling of the growth phases of Leishmania pifanoi promastigotes in axenic culture reveals differential abundance of immunostimulatory proteins. Acta Tropica, 2016, 158, 240-247.	0.9	8
18	Influence of the Microenvironment in the Transcriptome of Leishmania infantum Promastigotes: Sand Fly versus Culture. PLoS Neglected Tropical Diseases, 2016, 10, e0004693.	1.3	17

PEDRO J ALCOLEA

#	Article	IF	CITATIONS
19	Serum Removal from Culture Induces Growth Arrest, Ploidy Alteration, Decrease in Infectivity and Differential Expression of Crucial Genes in Leishmania infantum Promastigotes. PLoS ONE, 2016, 11, e0150172.	1.1	5
20	Increased Abundance of Proteins Involved in Resistance to Oxidative and Nitrosative Stress at the Last Stages of Growth and Development of Leishmania amazonensis Promastigotes Revealed by Proteome Analysis. PLoS ONE, 2016, 11, e0164344.	1.1	13
21	Nickel-Resistance Determinants in Acidiphilium sp. PM Identified by Genome-Wide Functional Screening. PLoS ONE, 2014, 9, e95041.	1.1	11
22	Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 347-354.	1.4	29
23	Stage-specific differential gene expression in Leishmania infantum: from the foregut of Phlebotomus perniciosus to the human phagocyte. BMC Genomics, 2014, 15, 849.	1.2	27
24	Structure of tyrosine aminotransferase from <i>Leishmania infantum</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 583-587.	0.4	18
25	An Insight into the Proteome of Crithidia fasciculata Choanomastigotes as a Comparative Approach to Axenic Growth, Peanut Lectin Agglutination and Differentiation of Leishmania spp. Promastigotes. PLoS ONE, 2014, 9, e113837.	1.1	28
26	Proteome Profiling of <i>Leishmania Infantum</i> Promastigotes. Journal of Eukaryotic Microbiology, 2011, 58, 352-358.	0.8	32
27	Genome-wide gene expression profile induced by exposure to cadmium acetate in Leishmania infantum promastigotes. International Microbiology, 2011, 14, 1-11.	1.1	18
28	Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum. BMC Genomics, 2010, 11, 31.	1.2	55
29	Transcriptomics throughout the life cycle of Leishmania infantum: High down-regulation rate in the amastigote stage. International Journal for Parasitology, 2010, 40, 1497-1516.	1.3	77
30	Antibiotic resistance free plasmid DNA expressing LACK protein leads towards a protective Th1 response against Leishmania infantum infection. Vaccine, 2009, 27, 6695-6703.	1.7	24
31	Genome-wide analysis reveals increased levels of transcripts related with infectivity in peanut lectin non-agglutinated promastigotes of Leishmania infantum. Genomics, 2009, 93, 551-564.	1.3	50