## Jiayu Xin

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2743546/publications.pdf Version: 2024-02-01



Ιμανίι Χινι

| #  | Article                                                                                                                                                                                                                          | IF          | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 1  | Machine Learning Screening of Efficient Ionic Liquids for Targeted Cleavage of the β–O–4 Bond of<br>Lignin. Journal of Physical Chemistry B, 2022, 126, 3693-3704.                                                               | 2.6         | 6         |
| 2  | Baseâ€free synthesis of bioâ€derived 2,5â€furandicarboxylic acid using SBAâ€15 supported heteropoly acids<br>ionic liquids. ChemistrySelect, 2022, 7, .                                                                          | s in<br>1.5 | 0         |
| 3  | Removal of trace amount impurities in glycolytic monomer of polyethylene terephthalate by recrystallization. Journal of Environmental Chemical Engineering, 2021, 9, 106277.                                                     | 6.7         | 19        |
| 4  | Progress in the catalytic glycolysis of polyethylene terephthalate. Journal of Environmental<br>Management, 2021, 296, 113267.                                                                                                   | 7.8         | 79        |
| 5  | Metal-free and mild photo-thermal synergism in ionic liquids for lignin C <sub>α</sub> –C <sub>β</sub><br>bond cleavage to provide aldehydes. Green Chemistry, 2021, 23, 5524-5534.                                              | 9.0         | 15        |
| 6  | Ethylenediamine Enhances Ionic Liquid Pretreatment Performance at High Solid Loading. ACS<br>Sustainable Chemistry and Engineering, 2020, 8, 13007-13018.                                                                        | 6.7         | 27        |
| 7  | Weak Bonds Joint Effects Catalyze the Cleavage of Strong Câ^'C Bond of Ligninâ€Inspired Compounds and<br>Lignin in Air by Ionic Liquids. ChemSusChem, 2020, 13, 5945-5953.                                                       | 6.8         | 7         |
| 8  | A renewable co-solvent promoting the selective removal of lignin by increasing the total number of hydrogen bonds. Green Chemistry, 2020, 22, 6393-6403.                                                                         | 9.0         | 18        |
| 9  | Adsorption Thermodynamics and Kinetics of Resin for Metal Impurities in Bis(2-hydroxyethyl)<br>Terephthalate. Polymers, 2020, 12, 2866.                                                                                          | 4.5         | 9         |
| 10 | Selective Deoxygenation of Lignin-Derived Phenols and Dimeric Ethers with Protic Ionic Liquids.<br>Industrial & Engineering Chemistry Research, 2020, 59, 4864-4871.                                                             | 3.7         | 8         |
| 11 | Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green<br>Chemistry, 2020, 22, 3122-3131.                                                                                        | 9.0         | 111       |
| 12 | Metalâ€Free Photochemical Degradation of Ligninâ€Derived Aryl Ethers and Lignin by Autologous Radicals<br>through Ionic Liquid Induction. ChemSusChem, 2019, 12, 4005-4013.                                                      | 6.8         | 37        |
| 13 | Efficient hydrodeoxygenation of lignin-derived phenols and dimeric ethers with synergistic<br>[Bmim]PF <sub>6</sub> -Ru/SBA-15 catalysis under acid free conditions. Green Chemistry, 2019, 21,<br>597-605.                      | 9.0         | 41        |
| 14 | Theoretical Study on the Conversion Mechanism of Biobased 2,5-Dimethylfuran and Acrylic Acid into<br>Aromatics Catalyzed by BrĀ,nsted Acid Ionic Liquids. Industrial & Engineering Chemistry Research,<br>2019, 58, 11111-11120. | 3.7         | 12        |
| 15 | High Aluminum Content Beta Zeolite as an Active Lewis Acid Catalyst for γ-Valerolactone<br>Decarboxylation. Industrial & Engineering Chemistry Research, 2019, 58, 11841-11848.                                                  | 3.7         | 12        |
| 16 | Highly Efficient Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid with Heteropoly<br>Acids and Ionic Liquids. ChemSusChem, 2019, 12, 2715-2724.                                                              | 6.8         | 58        |
| 17 | Catalytic synthesis of renewable hydrocarbons via hydrodeoxygenation of angelica lactone di/trimers. Fuel, 2018, 221, 311-319.                                                                                                   | 6.4         | 3         |
| 18 | Direct conversion of cellulose to sorbitol via an enhanced pretreatment with ionic liquids. Journal of Chemical Technology and Biotechnology, 2018, 93, 2617-2624.                                                               | 3.2         | 15        |

Jiayu Xin

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Base-free preparation of low molecular weight chitin from crab shell. Carbohydrate Polymers, 2018,<br>190, 148-155.                                                                                                                                      | 10.2 | 39        |
| 20 | One-step preparation of an antibacterial chitin/Zn composite from shrimp shells using<br>urea-Zn(OAc) <sub>2</sub> ·2H <sub>2</sub> O aqueous solution. Green Chemistry, 2018, 20, 2212-2217.                                                            | 9.0  | 24        |
| 21 | One-Pot Synthesis of 2,5-Furandicarboxylic Acid from Fructose in Ionic Liquids. Industrial &<br>Engineering Chemistry Research, 2018, 57, 1851-1858.                                                                                                     | 3.7  | 46        |
| 22 | One-Step Conversion of Biomass-Derived Furanics into Aromatics by BrÃ,nsted Acid Ionic Liquids at<br>Room Temperature. ACS Sustainable Chemistry and Engineering, 2018, 6, 2541-2551.                                                                    | 6.7  | 52        |
| 23 | Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids. Cellulose, 2018, 25, 3241-3254.                                                                                                     | 4.9  | 30        |
| 24 | Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a bio-based polyester monomer.<br>Catalysis Science and Technology, 2018, 8, 164-175.                                                                                              | 4.1  | 88        |
| 25 | Ultrafast Homogeneous Glycolysis of Waste Polyethylene Terephthalate via a<br>Dissolution-Degradation Strategy. Industrial & Engineering Chemistry Research, 2018, 57,<br>16239-16245.                                                                   | 3.7  | 92        |
| 26 | Facile Synthesis of Cellulose/ZnO Aerogel with Uniform and Tunable Nanoparticles Based on Ionic<br>Liquid and Polyhydric Alcohol. ACS Sustainable Chemistry and Engineering, 2018, 6, 16248-16254.                                                       | 6.7  | 14        |
| 27 | A Simple and Mild Approach for the Synthesis of <i>p</i> â€Xylene from Bioâ€Based 2,5â€Dimethyfuran by<br>Using Metal Triflates. ChemSusChem, 2017, 10, 2394-2401.                                                                                       | 6.8  | 40        |
| 28 | Production of Bioâ€Based Gasoline by Nobleâ€Metalâ€Catalyzed Hydrodeoxygenation of αâ€Angelica Lactone<br>Derived Di/Trimers. ChemistrySelect, 2017, 2, 4219-4225.                                                                                       | 1.5  | 14        |
| 29 | Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in ionic liquids.<br>Chemical Engineering Journal, 2017, 323, 473-482.                                                                                                     | 12.7 | 76        |
| 30 | Conversion of bis(2-hydroxyethylene terephthalate) into 1,4-cyclohexanedimethanol by selective<br>hydrogenation using RuPtSn/Al <sub>2</sub> O <sub>3</sub> . RSC Advances, 2016, 6, 48737-48744.                                                        | 3.6  | 13        |
| 31 | Ionic liquids and supercritical carbon dioxide: green and alternative reaction media for chemical processes. Reviews in Chemical Engineering, 2016, 32, 587-609.                                                                                         | 4.4  | 24        |
| 32 | Sub/supercritical carbon dioxide induced phase switching for the reaction and separation in ILs/methanol. Green Energy and Environment, 2016, 1, 144-148.                                                                                                | 8.7  | 13        |
| 33 | Using Sub/Supercritical CO <sub>2</sub> as "Phase Separation Switch―for the Efficient Production of<br>5-Hydroxymethylfurfural from Fructose in an Ionic Liquid/Organic Biphasic System. ACS Sustainable<br>Chemistry and Engineering, 2016, 4, 557-563. | 6.7  | 40        |
| 34 | Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems. Green Chemistry, 2016, 18, 2341-2352.                                                                                                                          | 9.0  | 66        |
| 35 | Hydrodeoxygenation of angelica lactone dimers and trimers over silica-alumina supported nickel catalyst. Renewable Energy, 2016, 86, 943-948.                                                                                                            | 8.9  | 15        |
| 36 | Preparation of 1,4-cyclohexanedimethanol by selective hydrogenation of a waste PET monomer bis(2-hydroxyethylene terephthalate). RSC Advances, 2015, 5, 485-492.                                                                                         | 3.6  | 14        |

Jiayu Xin

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Conversion of biomass derived valerolactone into high octane number gasoline with an ionic liquid.<br>Green Chemistry, 2015, 17, 1065-1070.                                               | 9.0  | 60        |
| 38 | An effective twoâ€step ionic liquids method for cornstalk pretreatment. Journal of Chemical<br>Technology and Biotechnology, 2015, 90, 2057-2065.                                         | 3.2  | 6         |
| 39 | Application of solid acid catalyst derived from low value biomass for a cheaper biodiesel production.<br>Journal of Chemical Technology and Biotechnology, 2014, 89, 1898-1909.           | 3.2  | 31        |
| 40 | Dimethyl carbonate mediated production of biodiesel at different reaction temperatures. Renewable<br>Energy, 2014, 68, 581-587.                                                           | 8.9  | 41        |
| 41 | Ionic liquid-based green processes for energy production. Chemical Society Reviews, 2014, 43, 7838-7869.                                                                                  | 38.1 | 399       |
| 42 | Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. Applied Energy, 2014, 114, 819-826.                                       | 10.1 | 186       |
| 43 | Efficient Conversion of Î $\pm$ -Angelica Lactone into Î <sup>3</sup> -Valerolactone with Ionic Liquids at Room Temperature. ACS Sustainable Chemistry and Engineering, 2014, 2, 902-909. | 6.7  | 31        |
| 44 | Formation of C–C bonds for the production of bio-alkanes under mild conditions. Green Chemistry, 2014, 16, 3589-3595.                                                                     | 9.0  | 68        |
| 45 | Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chemistry, 2014, 16, 3071.                                  | 9.0  | 180       |
| 46 | Effects of cations and anions of ionic liquids on the production of 5-hydroxymethylfurfural from fructose. Chemical Communications, 2012, 48, 4103.                                       | 4.1  | 84        |
| 47 | Test methods for the determination of biodiesel stability. Biofuels, 2010, 1, 275-289.                                                                                                    | 2.4  | 11        |
| 48 | Method for Improving Oxidation Stability of Biodiesel. Green Energy and Technology, 2010, , 171-175.                                                                                      | 0.6  | 1         |
| 49 | Improvement of the oxidation stability of biodiesel as prepared by supercritical methanol method with<br>lignin. European Journal of Lipid Science and Technology, 2009, 111, 835-842.    | 1.5  | 8         |
| 50 | Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel, 2009, 88, 282-286.                                                                                              | 6.4  | 130       |
| 51 | Effect of CO2/N2 addition to supercritical methanol on reactivities and fuel qualities in biodiesel production. Fuel, 2009, 88, 1329-1332.                                                | 6.4  | 45        |
| 52 | Oxidation stability of biodiesel fuel as prepared by supercritical methanol. Fuel, 2008, 87, 1807-1813.                                                                                   | 6.4  | 78        |
| 53 | A techno-economic analysis of bio-gasoline production from corn stover via catalytic conversion.<br>Clean Technologies and Environmental Policy, 0, , 1.                                  | 4.1  | 1         |