Hea Jung Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2742920/publications.pdf

Version: 2024-02-01

759233 642732 46 583 12 23 h-index citations g-index papers 47 47 47 922 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of Branching position of alkyl side chain on charge-transport characteristics of diketopyrrolopyrrole- and dichlorodithienylethene-based organic field-effect transistors. Organic Electronics, 2022, 101, 106403.	2.6	2
2	New green phosphorescent Ir(<scp>III</scp>) complex with carbazolylbenzimidazole ligand for <scp>solutionâ€processed</scp> organic lightâ€emitting diode. Bulletin of the Korean Chemical Society, 2022, 43, 133-137.	1.9	6
3	Dinuclear Pt(II) Complexes with Red and NIR Emission Governed by Ligand Control of the Intramolecular Pt–Pt Distance. Inorganic Chemistry, 2022, 61, 5178-5183.	4.0	10
4	Bithienopyrroledione-based polymeric donors for efficient fullerene- and non-fullerene-based organic photovoltaic cells. Dyes and Pigments, 2022, 200, 110176.	3.7	5
5	New blue phosphorescent Pt(II) complex with pyridyltriazole-based tetradentate ligand for organic light-emitting diodes. Organic Electronics, 2021, 98, 106300.	2.6	1
6	High Openâ€Circuit Voltage Organic Photovoltaics Fabricated Using an Alkylidene Fluorene Derivative as a Nonâ€fullerene Acceptor. Bulletin of the Korean Chemical Society, 2020, 41, 143-149.	1.9	4
7	Novel Conjugated Polymers Containing 3-(2-Octyldodecyl)thieno[3,2-b]thiophene as a π-Bridge for Organic Photovoltaic Applications. Polymers, 2020, 12, 2121.	4.5	5
8	New blue phosphorescent heteroleptic Ir(<scp>iii</scp>) complexes with imidazole- and <i>N</i> -methylimidazole carboxylates as ancillary ligands. Journal of Materials Chemistry C, 2020, 8, 13843-13851.	5 . 5	10
9	Thienoquinolinone as a new building block for wide bandgap semiconducting polymer donors for organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12265-12271.	5.5	6
10	Synthesis and Characterization of Benzotriazole-Based Polymer Donors with Good Planarity for Organic Photovoltaics. Macromolecular Research, 2020, 28, 903-909.	2.4	15
11	Synthesis of Novel Polyacrylates Containing Cyclotetrasiloxane for Fouling-Release Coating Applications. Journal of Nanoscience and Nanotechnology, 2019, 19, 4686-4690.	0.9	0
12	Thermally Cross-Linkable Styrene-Based Host Materials for Solution-Processed Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2019, 19, 4705-4709.	0.9	1
13	Effects of the core unit on perylene-diimide-based molecular acceptors in fullerene-free organic solar cells. Organic Electronics, 2019, 71, 238-245.	2.6	12
14	Synthesis and Characterization of DPP-Based Conjugated Polymers via Dehydrogenative Direct Alkenylation Polycondensation. Macromolecular Research, 2019, 27, 115-118.	2.4	14
15	Green phosphorescent homoleptic iridium(III) complexes for highly efficient organic light-emitting diodes. Dyes and Pigments, 2018, 156, 395-402.	3.7	15
16	Polystyrene- <i>block</i> -Poly(ionic liquid) Copolymers as Work Function Modifiers in Inverted Organic Photovoltaic Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4887-4894.	8.0	21
17	Highly efficient and spectrally stable white organic light-emitting diodes using new red heteroleptic Iridium(III) complexes. Dyes and Pigments, 2018, 149, 363-372.	3.7	9
18	Orange phosphorescent Ir(III) complexes consisting of substituted 2-phenylbenzothiazole for solution-processed organic light-emitting diodes. Organic Electronics, 2018, 60, 31-37.	2.6	14

#	Article	IF	Citations
19	Blue Phosphorescent Bipyridine-Based Iridium(III) Complex for Vacuum-Deposited Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2018, 18, 7047-7052.	0.9	1
20	Synthesis and Properties of Fluorinated Styrene Copolymers as Antibiofouling Coatings. Journal of Nanoscience and Nanotechnology, 2018, 18, 6343-6347.	0.9	3
21	Efficient organic photovoltaic cells based on thiazolothiazole and benzodithiophene copolymers with Ï€â€conjugated bridges. Journal of Polymer Science Part A, 2018, 56, 1978-1988.	2.3	6
22	Synthesis of efficient blue phosphorescent heteroleptic Ir(III) complexes containing 4-alkoxy- or 4-alkylaminopicolinates as ancillary ligands. Journal of Luminescence, 2017, 188, 323-330.	3.1	11
23	New 1,7â€Disubstituted Perylenediimides as Molecular Acceptors for Organic Solar Cells. Bulletin of the Korean Chemical Society, 2017, 38, 484-492.	1.9	4
24	Synthesis of a Zr-Based Metal–Organic Framework with Spirobifluorenetetrabenzoic Acid for the Effective Removal of Nerve Agent Simulants. Inorganic Chemistry, 2017, 56, 12098-12101.	4.0	44
25	Synthesis of New Heteroleptic Iridium(III) Complex Consisting of 2-Phenylquinoline and 2-[4-(Trimethylsilyl) phenyl]Pyridine for Red and White Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2017, 17, 5587-5592.	0.9	3
26	Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal–Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer. ACS Applied Materials & Interfaces, 2016, 8, 24983-24988.	8.0	44
27	Photochemical reactions of 1,2-diketones with silyl enol ethers. Research on Chemical Intermediates, $2015, 41, 419-431$.	2.7	1
28	Rational Design, Synthesis, and Characterization of Deep Blue Phosphorescent Ir(III) Complexes Containing (4′-Substituted-2′-pyridyl)-1,2,4-triazole Ancillary Ligands. Journal of Organic Chemistry, 2013, 78, 8054-8064.	3.2	53
29	Novel Naphthalene Based Lariat-Type Crown Ethers Using Direct Single Electron Transfer Photochemical Strategy. Bulletin of the Korean Chemical Society, 2013, 34, 3681-3689.	1.9	3
30	Photoadditions of Silyl Butadienyl Ether to 1,2-Diketones. Journal of the Korean Chemical Society, 2013, 57, 9-11.	0.2	1
31	Comparison of Photocyclization Reactions of Fluoro- vs Nonfluoro-Substituted Polymethyleneoxy Donor Linked Phthalimides. Bulletin of the Korean Chemical Society, 2013, 34, 1108-1114.	1.9	0
32	Search for New Blue Phosphorescent Iridium(III) Complexes for OLED Applications. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 171-174.	0.3	3
33	Photoaddition Reactions of Acetylpyridines with Silyl Ketene Acetals: SET vs [2 + 2]-Cycloaddition Pathways. Journal of Organic Chemistry, 2012, 77, 10304-10313.	3.2	15
34	Synthesis of new near infrared absorption polymers based on thiadiazoloquinoxaline and their solar cell applications. Synthetic Metals, 2012, 162, 1184-1189.	3.9	17
35	Synergistic effect of trimethylsilane for photoinduced electron transfer on 1,8-naphthalimides in polar solvent. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 246, 23-28.	3.9	2
36	A strategy for the preparation of cyclic polyarenes based on single electron transfer-promoted photocyclization reactions. Research on Chemical Intermediates, 2012, 38, 847-862.	2.7	2

#	Article	IF	CITATIONS
37	Exploration of photochemical reactions of N-trimethylsilylmethyl-substituted uracil, pyridone, and pyrrolidone derivatives. Photochemical and Photobiological Sciences, 2011, 10, 1169.	2.9	11
38	Regioselectivity of Enzymatic and Photochemical Single Electron Transfer Promoted Carbonâ^'Carbon Bond Fragmentation Reactions of Tetrameric Lignin Model Compounds. Journal of Organic Chemistry, 2011, 76, 2840-2852.	3.2	40
39	Photochemical Approach to the Preparation of Lariat Crown Ethers Containing Peptide Sidearms. Bulletin of the Korean Chemical Society, 2011, 32, 503-509.	1.9	4
40	Synthesis and Characterization of Bis-Thienyl-9,10-anthracenes Containing Electron Withdrawing 2-Cyanoacrylic Acid or 2-Methylenemalononitrile Group. Bulletin of the Korean Chemical Society, 2011, 32, 3081-3089.	1.9	4
41	Studies aimed at elucidating factors involved in the control of chemoselectivity in single electron transfer promoted photoreactions of branched-polydonor substituted phthalimides. Tetrahedron, 2010, 66, 3173-3186.	1.9	15
42	Nature and Kinetic Analysis of Carbonâ^'Carbon Bond Fragmentation Reactions of Cation Radicals Derived from SET-Oxidation of Lignin Model Compounds. Journal of Organic Chemistry, 2010, 75, 6549-6562.	3.2	88
43	Studies of Silyl-Transfer Photochemical Reactions of N-[(Trimethylsilyl)alkyl]saccharins. Bulletin of the Korean Chemical Society, 2010, 31, 2453-2458.	1.9	12
44	Synthesis and characterization of a series of bis(dimethyl-n-octylsilyl)oligothiophenes for organic thin film transistor applications. Synthetic Metals, 2009, 159, 1589-1596.	3.9	9
45	Azomethine Yilde Forming Photoreaction of N-(Tributylstannyl)methylphthalimide. Journal of the Korean Chemical Society, 2009, 53, 302-307.	0.2	0
46	Photoaddition Reactions of 1,2-Diketones with Silyl Ketene Acetals. Formation of Î ² -Hydroxy-Î ³ -ketoesters. Journal of Organic Chemistry, 2008, 73, 4539-4547.	3.2	36