Tarek S El-Madany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2742779/publications.pdf

Version: 2024-02-01

43 papers 1,454 citations

331538 21 h-index 330025 37 g-index

56 all docs

56
docs citations

56 times ranked 1966 citing authors

#	Article	IF	CITATIONS
1	A comparative study of ecohydrologies of a tropical mangrove and a broadleaf deciduous forest using eddy covariance measurement. Meteorology and Atmospheric Physics, 2022, 134, 1.	0.9	3
2	A remote sensingâ€based threeâ€source energy balance model to improve global estimations of evapotranspiration in semiâ€arid treeâ€grass ecosystems. Global Change Biology, 2022, 28, 1493-1515.	4.2	15
3	Heatwave breaks down the linearity between sunâ€induced fluorescence and gross primary production. New Phytologist, 2022, 233, 2415-2428.	3.5	51
4	Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems. Global Change Biology, 2022, 28, 2111-2123.	4.2	23
5	UAS-based high resolution mapping of evapotranspiration in a Mediterranean tree-grass ecosystem. Agricultural and Forest Meteorology, 2022, 321, 108981.	1.9	8
6	Carbon allocation and tree diversity: shifts in autotrophic respiration in tree mixtures compared to monocultures., 2022, 77, 3385-3396.		3
7	Evergreen broadleaf greenness and its relationship with leaf flushing, aging, and water fluxes. Agricultural and Forest Meteorology, 2022, 323, 109060.	1.9	3
8	Using terrestrial laser scanning for characterizing tree structural parameters and their changes under different management in a Mediterranean open woodland. Forest Ecology and Management, 2021, 486, 118945.	1.4	25
9	Functional convergence of biosphere–atmosphere interactions in response to meteorological conditions. Biogeosciences, 2021, 18, 2379-2404.	1.3	5
10	senSCOPE: Modeling mixed canopies combining green and brown senesced leaves. Evaluation in a Mediterranean Grassland. Remote Sensing of Environment, 2021, 257, 112352.	4.6	15
11	How Nitrogen and Phosphorus Availability Change Water Use Efficiency in a Mediterranean Savanna Ecosystem. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006005.	1.3	13
12	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	3.7	65
13	The effect of pixel heterogeneity for remote sensing based retrievals of evapotranspiration in a semi-arid tree-grass ecosystem. Remote Sensing of Environment, 2021, 260, 112440.	4.6	27
14	Sensitivity of Estimated Total Canopy SIF Emission to Remotely Sensed LAI and BRDF Products. Journal of Remote Sensing, 2021, 2021, .	3.2	20
15	The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.	13.7	99
16	Drought and heatwave impacts on semi-arid ecosystems' carbon fluxes along a precipitation gradient. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190519.	1.8	27
17	Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190524.	1.8	35
18	Sensitivity of gross primary productivity to climatic drivers during the summer drought of 2018 in Europe. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190747.	1.8	71

#	Article	IF	CITATIONS
19	Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach. Biogeosciences, 2020, 17, 1033-1061.	1.3	34
20	Seasonal Adaptation of the Thermal-Based Two-Source Energy Balance Model for Estimating Evapotranspiration in a Semiarid Tree-Grass Ecosystem. Remote Sensing, 2020, 12, 904.	1.8	20
21	Soil CO ₂ efflux errors are lognormally distributed – implications and guidance. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9, 239-254.	0.6	3
22	Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sensing of Environment, 2019, 234, 111362.	4.6	35
23	Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences, 2019, 16, 3747-3775.	1.3	150
24	Gross Primary Productivity of Four European Ecosystems Constrained by Joint CO ₂ and COS Flux Measurements. Geophysical Research Letters, 2019, 46, 5284-5293.	1.5	38
25	Understanding the controls over forest carbon use efficiency on small spatial scales: Effects of forest disturbance and tree diversity. Agricultural and Forest Meteorology, 2019, 269-270, 136-144.	1.9	11
26	Nitrogen and Phosphorus effect on Sun-Induced Fluorescence and Gross Primary Productivity in Mediterranean Grassland. Remote Sensing, 2019, 11, 2562.	1.8	19
27	Assessing the Use of Multiple Constraints and Ancillary Data to Support Scope Model Inversion in a Experimental Grassland. , 2018, , .		0
28	Partitioning Eddy Covariance Water Flux Components Using Physiological and Micrometeorological Approaches. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3353-3370.	1.3	50
29	Warm Winter, Wet Spring, and an Extreme Response in Ecosystem Functioning on the Iberian Peninsula. Bulletin of the American Meteorological Society, 2018, 99, S80-S85.	1.7	7
30	Drivers of spatio-temporal variability of carbon dioxide and energy fluxes in a Mediterranean savanna ecosystem. Agricultural and Forest Meteorology, 2018, 262, 258-278.	1.9	50
31	Bigleafâ€"An R package for the calculation of physical and physiological ecosystem properties from eddy covariance data. PLoS ONE, 2018, 13, e0201114.	1.1	67
32	Using Near-Infrared-Enabled Digital Repeat Photography to Track Structural and Physiological Phenology in Mediterranean Tree–Grass Ecosystems. Remote Sensing, 2018, 10, 1293.	1.8	64
33	Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem. Agricultural and Forest Meteorology, 2017, 236, 87-99.	1.9	60
34	Plant functional traits and canopy structure control the relationship between photosynthetic <scp>CO</scp> ₂ uptake and farâ€red sunâ€induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytologist, 2017, 214, 1078-1091.	3.5	158
35	Spatio-Temporal Relationships between Optical Information and Carbon Fluxes in a Mediterranean Tree-Grass Ecosystem. Remote Sensing, 2017, 9, 608.	1.8	15
36	Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland. Atmosphere, 2017, 8, 175.	1.0	12

#	Article	IF	CITATIONS
37	Chemical Composition of Fog Water at Four Sites in Taiwan. Aerosol and Air Quality Research, 2016, 16, 618-631.	0.9	28
38	Canopyâ€atmosphere interactions under foggy condition—Sizeâ€resolved fog droplet fluxes and their implications. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 796-808.	1.3	11
39	Size-resolved eddy covariance fluxes of nucleation to accumulation mode aerosol particles over a coniferous forest. Agricultural and Forest Meteorology, 2015, 214-215, 328-340.	1.9	22
40	Fog chemical composition and its feedback to fog water fluxes, water vapor fluxes, and microphysical evolution of two events near Paris. Atmospheric Research, 2015, 164-165, 328-338.	1.8	23
41	Microphysics and energy and water fluxes of various fog types at SIRTA, France. Atmospheric Research, 2015, 151, 162-175.	1.8	19
42	Low-level jets and above-canopy drainage as causes of turbulent exchange in the nocturnal boundary layer. Biogeosciences, 2014, 11, 4507-4519.	1.3	8
43	Comparison of sonic anemometer performance under foggy conditions. Agricultural and Forest Meteorology, 2013, 173, 63-73.	1.9	20