Toren Finkel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2742617/toren-finkel-publications-by-year.pdf

Version: 2024-04-23

ext. papers

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 180
 46,969
 84
 199

 papers
 citations
 h-index
 g-index

 199
 51,948
 16.2
 7.99

ext. citations

avg, IF

L-index

#	Paper	IF	Citations
180	Post-GWAS functional analysis identifies CUX1 as a regulator of p16INK4a and cellular senescence. <i>Nature Aging</i> , 2022 , 2, 140-154		1
179	The role of mitochondria in cellular senescence. FASEB Journal, 2021, 35, e21991	0.9	5
178	Forestalling age-impaired angiogenesis and blood flow by targeting NOX: Interplay of NOX1, IL-6, and SASP in propagating cell senescence. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	2
177	A high-throughput screen for TMPRSS2 expression identifies FDA-approved compounds that can limit SARS-CoV-2 entry. <i>Nature Communications</i> , 2021 , 12, 3907	17.4	10
176	A Fbxo48 inhibitor prevents pAMPKIdegradation and ameliorates insulin resistance. <i>Nature Chemical Biology</i> , 2021 , 17, 298-306	11.7	3
175	The secretome mouse provides a genetic platform to delineate tissue-specific in vivo secretion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	8
174	Transcriptional and Proteomic Characterization of Telomere-Induced Senescence in a Human Alveolar Epithelial Cell Line. <i>Frontiers in Medicine</i> , 2021 , 8, 600626	4.9	O
173	Sequential CRISPR-Based Screens Identify LITAF and CDIP1 as the Bacillus cereus Hemolysin BL Toxin Host Receptors. <i>Cell Host and Microbe</i> , 2020 , 28, 402-410.e5	23.4	14
172	Kelch-like protein 42 is a profibrotic ubiquitin E3 ligase involved in systemic sclerosis. <i>Journal of Biological Chemistry</i> , 2020 , 295, 4171-4180	5.4	6
171	Metabolic Regulation of Cell Fate and Function. <i>Trends in Cell Biology</i> , 2020 , 30, 201-212	18.3	24
170	EMRE is essential for mitochondrial calcium uniporter activity in a mouse model. <i>JCI Insight</i> , 2020 , 5,	9.9	17
169	Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses. <i>PLoS Biology</i> , 2020 , 18, e3000981	9.7	8
168	Identification of the transcription factor Miz1 as an essential regulator of diphthamide biosynthesis using a CRISPR-mediated genome-wide screen. <i>PLoS Genetics</i> , 2020 , 16, e1009068	6	1
167	Mitochondria as intracellular signaling platforms in health and disease. <i>Journal of Cell Biology</i> , 2020 , 219,	7.3	35
166	The mitochondria regulation of stem cell aging. Mechanisms of Ageing and Development, 2020, 191, 111	35₹.€	4
165	Autophagy goes nuclear. <i>Nature Cell Biology</i> , 2020 , 22, 1159-1161	23.4	4
164	Prioritized Research for the Prevention, Treatment, and Reversal of Chronic Disease: Recommendations From the Lifestyle Medicine Research Summit. <i>Frontiers in Medicine</i> , 2020 , 7, 585744	4.9	5

(2018-2020)

163	Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses 2020 , 18, e3000981		
162	Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses 2020 , 18, e3000981		
161	Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses 2020 , 18, e3000981		
160	Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses 2020 , 18, e3000981		
159	Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses 2020 , 18, e3000981		
158	Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses 2020 , 18, e3000981		
157	Assessment of mitophagy in mt-Keima revealed an essential role of the PINK1-Parkin pathway in mitophagy induction. <i>FASEB Journal</i> , 2019 , 33, 9742-9751	0.9	33
156	T cell stemness and dysfunction in tumors are triggered by a common mechanism. <i>Science</i> , 2019 , 363,	33.3	196
155	AMPK-mediated activation of MCU stimulates mitochondrial Ca entry to promote mitotic progression. <i>Nature Cell Biology</i> , 2019 , 21, 476-486	23.4	53
154	TFEB-driven lysosomal biogenesis is pivotal for PGC1Edependent renal stress resistance. <i>JCI Insight</i> , 2019 , 5,	9.9	25
153	Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. <i>Cardiovascular Research</i> , 2019 , 115, 385-394	9.9	35
152	Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 2019 , 73, 190-209	15.1	189
151	Macrophage fatty acid oxidation inhibits atherosclerosis progression. <i>Journal of Molecular and Cellular Cardiology</i> , 2019 , 127, 270-276	5.8	19
150	Ablation of PPARIIn subcutaneous fat exacerbates age-associated obesity and metabolic decline. <i>Aging Cell</i> , 2018 , 17, e12721	9.9	25
149	A Metabolic Basis for Endothelial-to-Mesenchymal Transition. <i>Molecular Cell</i> , 2018 , 69, 689-698.e7	17.6	96
148	Sensitive Measurement of Mitophagy by Flow Cytometry Using the pH-dependent Fluorescent Reporter mt-Keima. <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	12
147	TGF-Ireceptor 1 regulates progenitors that promote browning of white fat. <i>Molecular Metabolism</i> , 2018 , 16, 160-171	8.8	20
146	The role of mitochondria in aging. <i>Journal of Clinical Investigation</i> , 2018 , 128, 3662-3670	15.9	137

145	Hepatic Gi signaling regulates whole-body glucose homeostasis. <i>Journal of Clinical Investigation</i> , 2018 , 128, 746-759	15.9	21
144	Sonic hedgehog signaling regulates the mammalian cardiac regenerative response. <i>Journal of Molecular and Cellular Cardiology</i> , 2018 , 123, 180-184	5.8	11
143	The impact of aging on cardiac extracellular matrix. <i>GeroScience</i> , 2017 , 39, 7-18	8.9	109
142	Key proteins and pathways that regulate lifespan. <i>Journal of Biological Chemistry</i> , 2017 , 292, 6452-6460	5.4	131
141	The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2017 , 72, 1492-150	o6 ^{.4}	40
140	The role of ZKSCAN3 in the transcriptional regulation of autophagy. <i>Autophagy</i> , 2017 , 13, 1235-1238	10.2	16
139	The In Vivo Biology of the Mitochondrial Calcium Uniporter. <i>Advances in Experimental Medicine and Biology</i> , 2017 , 982, 49-63	3.6	17
138	Autophagy as a regulator of cardiovascular redox homeostasis. <i>Free Radical Biology and Medicine</i> , 2017 , 109, 108-113	7.8	47
137	A fluorescence-based imaging method to measure in vitro and in vivo mitophagy using mt-Keima. <i>Nature Protocols</i> , 2017 , 12, 1576-1587	18.8	123
136	Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. <i>Archives of Biochemistry and Biophysics</i> , 2017 , 613, 12-22	4.1	9
135	Intact endothelial autophagy is required to maintain vascular lipid homeostasis. <i>Aging Cell</i> , 2016 , 15, 187-91	9.9	69
134	Solid tumor therapy by selectively targeting stromal endothelial cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E4079-87	11.5	29
133	Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. <i>Cell Metabolism</i> , 2016 , 23, 63-76	24.6	210
132	Fatty acid oxidation in macrophage polarization. <i>Nature Immunology</i> , 2016 , 17, 216-7	19.1	175
131	The Mitochondrial Basis of Aging. <i>Molecular Cell</i> , 2016 , 61, 654-666	17.6	657
130	Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle. <i>Journal of Biological Chemistry</i> , 2016 , 291, 23343-23362	5.4	40
129	MICU1 Serves as a Molecular Gatekeeper to Prevent In[Vivo Mitochondrial Calcium Overload. <i>Cell Reports</i> , 2016 , 16, 1561-1573	10.6	140
128	MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice. <i>Scientific Reports</i> , 2015 , 5, 12049	4.9	15

(2013-2015)

127	Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter. <i>Journal of Molecular and Cellular Cardiology</i> , 2015 , 85, 178-82	5.8	86
126	Celastrol Protects against Obesity and Metabolic Dysfunction through Activation of a HSF1-PGC1 Transcriptional Axis. <i>Cell Metabolism</i> , 2015 , 22, 695-708	24.6	194
125	The ins and outs of mitochondrial calcium. <i>Circulation Research</i> , 2015 , 116, 1810-9	15.7	137
124	The metabolic regulation of aging. <i>Nature Medicine</i> , 2015 , 21, 1416-23	50.5	217
123	Measuring In Vivo Mitophagy. <i>Molecular Cell</i> , 2015 , 60, 685-96	17.6	379
122	The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. <i>Journal of Biological Chemistry</i> , 2015 , 290, 2547-59	5.4	66
121	The role of autophagy in vascular biology. Circulation Research, 2015, 116, 480-8	15.7	155
120	Mitohormesis. Cell Metabolism, 2014 , 19, 757-66	24.6	420
119	Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression. Developmental Cell, 2014 , 29, 217-32	10.2	201
118	Cellular mechanisms and physiological consequences of redox-dependent signalling. <i>Nature Reviews Molecular Cell Biology</i> , 2014 , 15, 411-21	48.7	1221
118		48.7 6.3	1221
	Reviews Molecular Cell Biology, 2014 , 15, 411-21		3
117	Reviews Molecular Cell Biology, 2014, 15, 411-21 Aging: the blurry line between life and death. Current Biology, 2014, 24, R610-3 Unraveling the truth about antioxidants: ROS and disease: finding the right balance. Nature	6.3	3
117 116	Aging: the blurry line between life and death. <i>Current Biology</i> , 2014 , 24, R610-3 Unraveling the truth about antioxidants: ROS and disease: finding the right balance. <i>Nature Medicine</i> , 2014 , 20, 711-3 Unresolved questions from the analysis of mice lacking MCU expression. <i>Biochemical and</i>	6.3 50.5	3 95
117 116 115	Aging: the blurry line between life and death. <i>Current Biology</i> , 2014 , 24, R610-3 Unraveling the truth about antioxidants: ROS and disease: finding the right balance. <i>Nature Medicine</i> , 2014 , 20, 711-3 Unresolved questions from the analysis of mice lacking MCU expression. <i>Biochemical and Biophysical Research Communications</i> , 2014 , 449, 384-5 Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the	6.3 50.5 3.4 6.6	39573
117 116 115	Aging: the blurry line between life and death. <i>Current Biology</i> , 2014 , 24, R610-3 Unraveling the truth about antioxidants: ROS and disease: finding the right balance. <i>Nature Medicine</i> , 2014 , 20, 711-3 Unresolved questions from the analysis of mice lacking MCU expression. <i>Biochemical and Biophysical Research Communications</i> , 2014 , 449, 384-5 Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the antimetabolite 6-aminonicotinamide. <i>Molecular Cancer Research</i> , 2014 , 12, 48-57	6.3 50.5 3.4 6.6	3957342
117 116 115 114	Aging: the blurry line between life and death. <i>Current Biology</i> , 2014 , 24, R610-3 Unraveling the truth about antioxidants: ROS and disease: finding the right balance. <i>Nature Medicine</i> , 2014 , 20, 711-3 Unresolved questions from the analysis of mice lacking MCU expression. <i>Biochemical and Biophysical Research Communications</i> , 2014 , 449, 384-5 Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the antimetabolite 6-aminonicotinamide. <i>Molecular Cancer Research</i> , 2014 , 12, 48-57 Cardiac aging and rejuvenationa sense of humors?. <i>New England Journal of Medicine</i> , 2013 , 369, 575-6	6.3 50.5 3.4 6.6	 3 95 73 42 13 37

109	The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. <i>Nature Cell Biology</i> , 2013 , 15, 1464-72	23.4	456
108	Stem cells and oxidants: too little of a bad thing. <i>Cell Metabolism</i> , 2013 , 18, 1-2	24.6	17
107	Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. <i>Cell Stem Cell</i> , 2013 , 12, 62-74	18	211
106	Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. <i>Journal of Clinical Investigation</i> , 2013 , 123, 4479-88	15.9	535
105	The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. <i>Nature</i> , 2012 , 492, 199-20	14 50.4	122
104	Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. <i>Cell Cycle</i> , 2012 , 11, 1383-92	4.7	90
103	Guidelines for the use and interpretation of assays for monitoring autophagy. <i>Autophagy</i> , 2012 , 8, 445-	5 44 .2	2783
102	Relief with rapamycin: mTOR inhibition protects against radiation-induced mucositis. <i>Cell Stem Cell</i> , 2012 , 11, 287-8	18	9
101	From sulfenylation to sulfhydration: what a thiolate needs to tolerate. <i>Science Signaling</i> , 2012 , 5, pe10	8.8	116
100	Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. <i>Science</i> , 2012 , 336, 225-8	33.3	234
99	Signal transduction by mitochondrial oxidants. <i>Journal of Biological Chemistry</i> , 2012 , 287, 4434-40	5.4	266
98	TGF-¶Smad3 signaling inhibition protects from obesity and diabetes through modulation of adipocyte biology. <i>FASEB Journal</i> , 2012 , 26, 877.6	0.9	
97	Disruption of Mitochondrial Phosphatase Ptpmt1 Induces Bioenergetic Stress and Differentiation Block in Hematopoietic Stem Cells. <i>Blood</i> , 2012 , 120, 857-857	2.2	
96	Protection from obesity and diabetes by blockade of TGF-//Smad3 signaling. <i>Cell Metabolism</i> , 2011 , 14, 67-79	24.6	418
95	Signal transduction by reactive oxygen species. <i>Journal of Cell Biology</i> , 2011 , 194, 7-15	7.3	1518
94	Wnt signaling regulates hepatic metabolism. <i>Science Signaling</i> , 2011 , 4, ra6	8.8	129
93	Oxidants, metabolism, and stem cell biology. Free Radical Biology and Medicine, 2011, 51, 2158-62	7.8	22
92	Telomeres and mitochondrial function. <i>Circulation Research</i> , 2011 , 108, 903-4	15.7	8

(2008-2011)

91	Caenorhabditis elegans UCP4 protein controls complex II-mediated oxidative phosphorylation through succinate transport. <i>Journal of Biological Chemistry</i> , 2011 , 286, 37712-20	5.4	32
90	Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 12455-60	11.5	159
89	Genetic links between circulating cells and cardiovascular risk. <i>Circulation: Cardiovascular Genetics</i> , 2011 , 4, 218-20		1
88	A critical role of mitochondrial phosphatase Ptpmt1 in embryogenesis reveals a mitochondrial metabolic stress-induced differentiation checkpoint in embryonic stem cells. <i>Molecular and Cellular Biology</i> , 2011 , 31, 4902-16	4.8	27
87	Strategic plan for lung vascular research: An NHLBI-ORDR Workshop Report. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2010 , 182, 1554-62	10.2	59
86	53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. <i>Cell</i> , 2010 , 141, 243-54	56.2	1147
85	Impact papers on aging in 2009. <i>Aging</i> , 2010 , 2, 111-21	5.6	29
84	The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 11825-6	11.5	55
83	Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. <i>Hypertension</i> , 2009 , 54, 868-76	8.5	49
82	Regulation of autophagy by the p300 acetyltransferase. <i>Journal of Biological Chemistry</i> , 2009 , 284, 6322	2-3 84	189
81	Bmi1 regulates mitochondrial function and the DNA damage response pathway. <i>Nature</i> , 2009 , 459, 387	-35924	379
80	Recent progress in the biology and physiology of sirtuins. <i>Nature</i> , 2009 , 460, 587-91	50.4	1133
79	Preview. The Tortoise, the hare, and the FoxO. Cell Stem Cell, 2009, 5, 451-2	18	8
78	A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. <i>Molecular Cell</i> , 2009 , 35, 534-41	17.6	223
77	The ClinSeq Project: piloting large-scale genome sequencing for research in genomic medicine. <i>Genome Research</i> , 2009 , 19, 1665-74	9.7	209
76	Breathing lessons: Tor tackles the mitochondria. <i>Aging</i> , 2009 , 1, 9-11	5.6	2
75	Free radicals and senescence. Experimental Cell Research, 2008, 314, 1918-22	4.2	240
74	Redox-based regulation of signal transduction: principles, pitfalls, and promises. <i>Free Radical Biology and Medicine</i> , 2008 , 45, 1-17	7.8	617

73	A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 3374-9	11.5	1079
72	Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. <i>Molecular Cell</i> , 2008 , 32, 11-20	17.6	294
71	A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 14447-52	11.5	943
70	Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. <i>Cell Cycle</i> , 2008 , 7, 1782-7	4.7	79
69	SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism. <i>Molecular Cancer Research</i> , 2008 , 6, 1499-506	6.6	84
68	Mitochondrial metabolism modulates differentiation and teratoma formation capacity in mouse embryonic stem cells. <i>Journal of Biological Chemistry</i> , 2008 , 283, 28506-12	5.4	147
67	The common biology of cancer and ageing. <i>Nature</i> , 2007 , 448, 767-74	50.4	781
66	Augmented Wnt signaling in a mammalian model of accelerated aging. <i>Science</i> , 2007 , 317, 803-6	33.3	599
65	Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. <i>Cell Metabolism</i> , 2007 , 5, 115-28	24.6	142
64	TOR and aging: less is more. <i>Cell Metabolism</i> , 2007 , 5, 233-5	24.6	22
63	Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. <i>Journal of Experimental Medicine</i> , 2006 , 203, 1235-47	16.6	607
62	Intracellular redox regulation by the family of small GTPases. <i>Antioxidants and Redox Signaling</i> , 2006 , 8, 1857-63	8.4	54
61	The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. <i>Journal of Biological Chemistry</i> , 2006 , 281, 27643-52	5.4	465
60	The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism. <i>Journal of Biological Chemistry</i> , 2006 , 281, 10555-60	5.4	119
59	Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. <i>Nature Cell Biology</i> , 2006 , 8, 1025-31	23.4	366
58	Redox-dependent transcriptional regulation. <i>Circulation Research</i> , 2005 , 97, 967-74	15.7	359
57	SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. <i>Journal of Biological Chemistry</i> , 2005 , 280, 16456-60	5.4	798

55	Endothelial progenitor cells. <i>Annual Review of Medicine</i> , 2005 , 56, 79-101	17.4	315
54	Radical medicine: treating ageing to cure disease. <i>Nature Reviews Molecular Cell Biology</i> , 2005 , 6, 971-6	48.7	199
53	Effect of a histone deacetylase inhibitor on human cardiac mass. <i>Cardiovascular Drugs and Therapy</i> , 2005 , 19, 89-90	3.9	5
52	Phosphorylation of p66Shc and forkhead proteins mediates Abeta toxicity. <i>Journal of Cell Biology</i> , 2005 , 169, 331-9	7.3	83
51	Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2005 , 25, 296-301	9.4	207
50	Circulation Research Editors Annual Report for 2004. Circulation Research, 2005, 96, 269-271	15.7	
49	Xanthine oxidoreductase is an endogenous regulator of cyclooxygenase-2. <i>Circulation Research</i> , 2004 , 95, 1118-24	15.7	80
48	Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. <i>Science</i> , 2004 , 306, 2105-6	833.3	569
47	Circulation Research Editors Yearly Report: 2003. Circulation Research, 2004, 94, 129-131	15.7	
46	Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. <i>New England Journal of Medicine</i> , 2003 , 348, 593-600	59.2	2912
45	Oxidant signals and oxidative stress. Current Opinion in Cell Biology, 2003, 15, 247-54	9	1166
44	Pharmacology: uncoupling the agony from ecstasy. <i>Nature</i> , 2003 , 426, 403-4	50.4	121
43	Neutrophils with a license to kill: permeabilized, not stirred. Developmental Cell, 2003, 4, 146-8	10.2	8
42	Circulation Research Editors Yearly Report: 2002. Circulation Research, 2003, 92, 121-123	15.7	
41	Identification of a specific molecular repressor of the peroxisome proliferator-activated receptor gamma Coactivator-1 alpha (PGC-1alpha). <i>Journal of Biological Chemistry</i> , 2002 , 277, 50991-5	5.4	108
40	Regulation of cellular oncosis by uncoupling protein 2. Journal of Biological Chemistry, 2002, 277, 27385	- 9 .24	90
39	Detection and affinity purification of oxidant-sensitive proteins using biotinylated glutathione ethyl ester. <i>Methods in Enzymology</i> , 2002 , 353, 101-13	1.7	20
38	Redox regulation of Cdc25C. <i>Journal of Biological Chemistry</i> , 2002 , 277, 20535-40	5.4	171

37	Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. <i>Science</i> , 2002 , 295, 2450-2	33.3	728
36	A role for mitochondria as potential regulators of cellular life span. <i>Biochemical and Biophysical Research Communications</i> , 2002 , 294, 245-8	3.4	63
35	Regulation of the Werner helicase through a direct interaction with a subunit of protein kinase A. <i>FEBS Letters</i> , 2002 , 521, 170-4	3.8	8
34	Oxidants painting the cysteine chapel: redox regulation of PTPs. Developmental Cell, 2002, 2, 251-2	10.2	139
33	Circulation Research Editors Yearly Report: 2001. Circulation Research, 2002, 90, 115-117	15.7	
32	Ras regulates NFAT3 activity in cardiac myocytes. <i>Journal of Biological Chemistry</i> , 2001 , 276, 3524-30	5.4	70
31	Expression of Rho GTPases using adenovirus vectors. <i>Methods in Enzymology</i> , 2000 , 325, 303-14	1.7	3
30	Oxidants, oxidative stress and the biology of ageing. <i>Nature</i> , 2000 , 408, 239-47	50.4	6859
29	Circulation research Editors' yearly report: 1999-2000. Circulation Research, 2000, 87, 261-3	15.7	1
28	Vascular effects following homozygous disruption of p47(phox): An essential component of NADPH oxidase. <i>Circulation</i> , 2000 , 101, 1234-6	16.7	140
27	Role for mitochondrial oxidants as regulators of cellular metabolism. <i>Molecular and Cellular Biology</i> , 2000 , 20, 7311-8	4.8	323
26	Homocysteine accelerates endothelial cell senescence. FEBS Letters, 2000, 470, 20-4	3.8	153
25	Redox-dependent signal transduction. FEBS Letters, 2000, 476, 52-4	3.8	431
24	Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolation. <i>Biochemistry</i> , 2000 , 39, 11121-8	3.2	207
23	Cytomegalovirus infection of rats increases the neointimal response to vascular injury without consistent evidence of direct infection of the vascular wall. <i>Circulation</i> , 1999 , 100, 1569-75	16.7	68
22	A role for reactive oxygen species in endothelial cell anoikis. <i>Circulation Research</i> , 1999 , 85, 304-10	15.7	161
21	The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. <i>Antioxidants and Redox Signaling</i> , 1999 , 1, 29-43	8.4	72
20	Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. <i>Journal of Biological Chemistry</i> , 1999 , 274, 7936-40	5.4	497

(1981-1999)

19	Effects of human cytomegalovirus immediate-early proteins on p53-mediated apoptosis in coronary artery smooth muscle cells. <i>Circulation</i> , 1999 , 99, 1656-9	16.7	109
18	VEGF stimulates MAPK through a pathway that is unique for receptor tyrosine kinases. <i>Biochemical and Biophysical Research Communications</i> , 1999 , 255, 545-8	3.4	79
17	Regulation of endothelial cell adherens junctions by a Ras-dependent signal transduction pathway. <i>Biochemical and Biophysical Research Communications</i> , 1999 , 260, 371-6	3.4	5
16	Signal transduction by reactive oxygen species in non-phagocytic cells. <i>Journal of Leukocyte Biology</i> , 1999 , 65, 337-40	6.5	207
15	Myocyte hypertrophy: the long and winding RhoA'd. Journal of Clinical Investigation, 1999, 103, 1619-20	15.9	16
14	Oxygen radicals and signaling. <i>Current Opinion in Cell Biology</i> , 1998 , 10, 248-53	9	960
13	Bcl-2 regulates nonapoptotic signal transduction: inhibition of c-Jun N-terminal kinase (JNK) activation by IL-1 beta and hydrogen peroxide. <i>Molecular Genetics and Metabolism</i> , 1998 , 64, 19-24	3.7	22
12	Expression of Id1 results in apoptosis of cardiac myocytes through a redox-dependent mechanism. Journal of Biological Chemistry, 1998 , 273, 25922-8	5.4	48
11	Regulation of endothelial cell adhesion by profilin. Current Biology, 1997, 7, 24-30	6.3	42
10	Inhibition of vascular smooth muscle cell proliferation and neointimal accumulation by adenovirus-mediated gene transfer of cytosine deaminase. <i>Circulation</i> , 1997 , 96, 621-7	16.7	41
9	Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. <i>New England Journal of Medicine</i> , 1996 , 335, 624-30	59.2	390
8	Superoxide-mediated actin response in post-hypoxic endothelial cells. <i>Journal of Biological Chemistry</i> , 1996 , 271, 26863-7	5.4	82
7	Gene therapy for vascular disease. <i>FASEB Journal</i> , 1995 , 9, 843-51	0.9	42
6	The basis of molecular strategies for treating coronary restenosis after angioplasty. <i>Journal of the American College of Cardiology</i> , 1994 , 23, 1278-88	15.1	76
5	Biological and biochemical properties of human rasH genes mutated at codon 61. <i>Cell</i> , 1986 , 44, 167-76	56.2	481
4	Activation of ras genes in human tumors does not affect localization, modification, or nucleotide binding properties of p21. <i>Cell</i> , 1984 , 37, 151-8	56.2	137
3	Detection of a molecular complex between ras proteins and transferrin receptor. <i>Cell</i> , 1984 , 36, 1115-2	156.2	36
2	Fertilization in the sea urchin arbacia punctulata inhibited by fluorescein dyes: Evidence for a plasma membrane mechanism. <i>Gamete Research</i> , 1981 , 4, 219-229		4

Membrane potential, pH and the activation of surf clam oocytes. *Gamete Research*, **1980**, 3, 299-304

41