Paul Prikryl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2742291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Propagation of Ionospheric Disturbances Associated With the 2022 Tonga Volcanic Eruption. Geophysical Research Letters, 2022, 49, .	4.0	133
2	Temporal and spatial variations of GPS TEC and phase during auroral substorms and breakups. Polar Science, 2021, 28, 100602.	1.2	4
3	Heavy rainfall, floods, and flash floods influenced by high-speed solar wind coupling to the magnetosphere–ionosphere–atmosphere system. Annales Geophysicae, 2021, 39, 769-793.	1.6	5
4	High-Rate Precipitation Occurrence Modulated by Solar Wind High-Speed Streams. Atmosphere, 2021, 12, 1186.	2.3	1
5	White-light solar corona structure observed by naked eye and processed images. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2170-2178.	4.4	3
6	Rapid intensification of tropical cyclones in the context of the solar wind-magnetosphere-ionosphere-atmosphere coupling. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 183, 36-60.	1.6	7
7	Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 171, 94-110.	1.6	10
8	GPS phase scintillation and auroral electrojet currents during geomagnetic storms of March 17, 2013 and 2015. , 2017, , .		1
9	A link between high-speed solar wind streams and explosive extratropical cyclones. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 149, 219-231.	1.6	15
10	GPS phase scintillation at high latitudes during the geomagnetic storm of 17–18 March 2015. Journal of Geophysical Research: Space Physics, 2016, 121, 10,448.	2.4	49
11	Analysis of GPS phase rate variations in response to geomagnetic field perturbations over the Canadian auroral region. Advances in Space Research, 2015, 55, 1372-1381.	2.6	6
12	GPS phase scintillation at high latitudes during geomagnetic storms of 7–17 March 2012 – Part 1: The North American sector. Annales Geophysicae, 2015, 33, 637-656.	1.6	21
13	Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Annales Geophysicae, 2015, 33, 531-545.	1.6	61
14	High-latitude GPS phase scintillation and cycle slips during high-speed solar wind streams and interplanetary coronal mass ejections: a superposed epoch analysis. Earth, Planets and Space, 2014, 66, .	2.5	39
15	GPS phase difference variation statistics: A comparison between phase scintillation index and proxy indices. Advances in Space Research, 2013, 52, 1397-1405.	2.6	28
16	GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm. Annales Geophysicae, 2013, 31, 805-816.	1.6	53
17	An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite. Annals of Geophysics, 2013, 56, .	1.0	10
18	Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5–7 April 2010. Annales Geophysicae, 2011, 29, 2287-2304.	1.6	45

PAUL PRIKRYL

#	Article	IF	CITATIONS
19	Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions. Annales Geophysicae, 2011, 29, 377-392.	1.6	80
20	GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum. Annales Geophysicae, 2010, 28, 1307-1316.	1.6	101
21	The influence of solar wind on extratropical cyclones – Part 2: A link mediated by auroral atmospheric gravity waves?. Annales Geophysicae, 2009, 27, 31-57.	1.6	22
22	The influence of solar wind on extratropical cyclones – Part 1: Wilcox effect revisited. Annales Geophysicae, 2009, 27, 1-30.	1.6	40
23	Solar wind Alfvén waves: a source of pulsed ionospheric convection and atmospheric gravity waves. Annales Geophysicae, 2005, 23, 401-417.	1.6	19