
Hao-Bin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2742282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed Transitionâ€Metal Oxides: Design, Synthesis, and Energyâ€Related Applications. Angewandte Chemie - International Edition, 2014, 53, 1488-1504.	7.2	2,019
2	A metal–organic framework-derived bifunctional oxygenÂelectrocatalyst. Nature Energy, 2016, 1, .	19.8	1,974
3	Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6, 6512.	5.8	1,194
4	Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nature Communications, 2015, 6, 6694.	5.8	1,101
5	Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale, 2012, 4, 2526.	2.8	1,012
6	Formation of Fe ₂ O ₃ Microboxes with Hierarchical Shell Structures from Metal–Organic Frameworks and Their Lithium Storage Properties. Journal of the American Chemical Society, 2012, 134, 17388-17391.	6.6	935
7	Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications, 2014, 5, 5002.	5.8	892
8	Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Science Advances, 2017, 3, eaap9252.	4.7	824
9	Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy and Environmental Science, 2012, 5, 9453.	15.6	754
10	Quasiemulsion-Templated Formation of α-Fe ₂ O ₃ Hollow Spheres with Enhanced Lithium Storage Properties. Journal of the American Chemical Society, 2011, 133, 17146-17148.	6.6	750
11	Confining Sulfur in Doubleâ€Shelled Hollow Carbon Spheres for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2012, 51, 9592-9595.	7.2	692
12	Complex Nanostructures from Materials based on Metal–Organic Frameworks for Electrochemical Energy Storage and Conversion. Advanced Materials, 2017, 29, 1703614.	11.1	629
13	Complex Hollow Nanostructures: Synthesis and Energyâ€Related Applications. Advanced Materials, 2017, 29, 1604563.	11.1	627
14	Formation of ZnMn ₂ O ₄ Ballâ€inâ€Ball Hollow Microspheres as a Highâ€Performance Anode for Lithiumâ€ion Batteries. Advanced Materials, 2012, 24, 4609-4613.	11.1	603
15	Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 3061-3070.	15.6	598
16	One-Pot Synthesis of Cubic PtCu ₃ Nanocages with Enhanced Electrocatalytic Activity for the Methanol Oxidation Reaction. Journal of the American Chemical Society, 2012, 134, 13934-13937.	6.6	581
17	Controlled Growth of NiMoO ₄ Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. Advanced Energy Materials, 2015, 5, 1401172.	10.2	559
18	High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy and Environmental Science, 2014, 7, 3709-3719.	15.6	557

#	Article	IF	CITATIONS
19	Hierarchical βâ€Mo ₂ C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 15395-15399.	7.2	546
20	Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO ₂ –Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors. ACS Nano, 2017, 11, 2952-2960.	7.3	542
21	Metal–Organic-Frameworks-Derived General Formation of Hollow Structures with High Complexity. Journal of the American Chemical Society, 2013, 135, 10664-10672.	6.6	520
22	Templateâ€free Formation of Uniform Urchinâ€like <i>α</i> â€FeOOH Hollow Spheres with Superior Capability for Water Treatment. Advanced Materials, 2012, 24, 1111-1116.	11.1	504
23	Ironâ€Oxideâ€Based Advanced Anode Materials for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1300958.	10.2	498
24	Hierarchical MoS ₂ microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy and Environmental Science, 2014, 7, 3302-3306.	15.6	471
25	Bowlâ€like SnO ₂ @Carbon Hollow Particles as an Advanced Anode Material for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2014, 53, 12803-12807.	7.2	463
26	Formation of Nickel Sulfide Nanoframes from Metal–Organic Frameworks with Enhanced Pseudocapacitive and Electrocatalytic Properties. Angewandte Chemie - International Edition, 2015, 54, 5331-5335.	7.2	439
27	Ultrathin and Ultralong Single-Crystal Platinum Nanowire Assemblies with Highly Stable Electrocatalytic Activity. Journal of the American Chemical Society, 2013, 135, 9480-9485.	6.6	425
28	Formation of Ni _{<i>x</i>} Co _{3â^'<i>x</i>} S ₄ Hollow Nanoprisms with Enhanced Pseudocapacitive Properties. Angewandte Chemie - International Edition, 2014, 53, 3711-3714.	7.2	417
29	Oneâ€Pot Synthesis of Pt–Co Alloy Nanowire Assemblies with Tunable Composition and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2015, 54, 3797-3801.	7.2	407
30	Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications. Accounts of Chemical Research, 2017, 50, 293-301.	7.6	397
31	Formation of Uniform Fe ₃ O ₄ Hollow Spheres Organized by Ultrathin Nanosheets and Their Excellent Lithium Storage Properties. Advanced Materials, 2015, 27, 4097-4101.	11.1	396
32	Mesoporous Li ₄ Ti ₅ O ₁₂ Hollow Spheres with Enhanced Lithium Storage Capability. Advanced Materials, 2013, 25, 2296-2300.	11.1	364
33	Embedding Sulfur in MOFâ€Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2013, 19, 10804-10808.	1.7	355
34	Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 3619.	15.6	347
35	Formation of 1D Hierarchical Structures Composed of Ni ₃ S ₂ Nanosheets on CNTs Backbone for Supercapacitors and Photocatalytic H ₂ Production. Advanced Energy Materials, 2012, 2, 1497-1502.	10.2	321
36	Hierarchical Tubular Structures Constructed by Carbon oated SnO ₂ Nanoplates for Highly Reversible Lithium Storage. Advanced Materials, 2013, 25, 2589-2593.	11.1	304

#	Article	IF	CITATIONS
37	A Flexible TiO ₂ (B)â€Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life. Advanced Materials, 2013, 25, 3462-3467.	11.1	286
38	Templateâ€Free Synthesis of VO ₂ Hollow Microspheres with Various Interiors and Their Conversion into V ₂ O ₅ for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 2226-2230.	7.2	275
39	Direct Synthesis of Anatase TiO ₂ Nanowires with Enhanced Photocatalytic Activity. Advanced Materials, 2012, 24, 2567-2571.	11.1	271
40	Formation of Mesoporous Heterostructured BiVO ₄ /Bi ₂ S ₃ Hollow Discoids with Enhanced Photoactivity. Angewandte Chemie - International Edition, 2014, 53, 5917-5921.	7.2	269
41	Controlled synthesis of hierarchical Co _x Mn _{3â^'x} O ₄ array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. Energy and Environmental Science, 2013, 6, 2664-2671.	15.6	265
42	Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy and Environmental Science, 2013, 6, 1476.	15.6	256
43	Confining Subâ€Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity. Advanced Materials, 2020, 32, e1901349.	11.1	255
44	Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Applied Catalysis B: Environmental, 2020, 266, 118627.	10.8	255
45	Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)·0.11H2O nanowires with improved supercapacitive properties. Nanoscale, 2012, 4, 2145.	2.8	251
46	Facile preparation of ZnMn ₂ O ₄ hollow microspheres as high-capacity anodes for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 827-829.	6.7	236
47	Hierarchical NiCo ₂ O ₄ Nanosheets Grown on Ni Nanofoam as High-Performance Electrodes for Supercapacitors. Small, 2015, 11, 804-808.	5.2	232
48	Creating Lithiumâ€ion Electrolytes with Biomimetic Ionic Channels in Metal–Organic Frameworks. Advanced Materials, 2018, 30, e1707476.	11.1	230
49	Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors. Chemical Communications, 2012, 48, 6912.	2.2	228
50	Citrateâ€Assisted Growth of NiCo ₂ O ₄ Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage. Advanced Energy Materials, 2014, 4, 1400422.	10.2	227
51	Selfâ€6upported Construction of Uniform Fe ₃ O ₄ Hollow Microspheres from Nanoplate Building Blocks. Angewandte Chemie - International Edition, 2013, 52, 4165-4168.	7.2	222
52	Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy and Environmental Science, 2014, 7, 1013.	15.6	221
53	Microwaveâ€Assisted Synthesis of Porous Ag ₂ S–Ag Hybrid Nanotubes with High Visibleâ€Light Photocatalytic Activity. Angewandte Chemie - International Edition, 2012, 51, 11501-11504.	7.2	215
54	Self‣upported Interconnected Pt Nanoassemblies as Highly Stable Electrocatalysts for Lowâ€Temperature Fuel Cells. Angewandte Chemie - International Edition, 2012, 51, 7213-7216.	7.2	211

#	Article	IF	CITATIONS
55	Synthesis of SnO ₂ Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties. Journal of Physical Chemistry C, 2011, 115, 24605-24610.	1.5	200
56	A Flexible Quasiâ€Solidâ€State Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V ₂ O ₅ Nanosheets on Carbon Nanofibers. Advanced Energy Materials, 2015, 5, 1500753.	10.2	198
57	Highly Concave Platinum Nanoframes with Highâ€Index Facets and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2013, 52, 12337-12340.	7.2	193
58	Ordered Macroporous BiVO ₄ Architectures with Controllable Dual Porosity for Efficient Solar Water Splitting. Angewandte Chemie - International Edition, 2013, 52, 8579-8583.	7.2	179
59	Rutile TiO ₂ Submicroboxes with Superior Lithium Storage Properties. Angewandte Chemie - International Edition, 2015, 54, 4001-4004.	7.2	169
60	Interconnected MoO ₂ Nanocrystals with Carbon Nanocoating as High-Capacity Anode Materials for Lithium-ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 4853-4857.	4.0	167
61	TiO ₂ Hollow Spheres Composed of Highly Crystalline Nanocrystals Exhibit Superior Lithium Storage Properties. Angewandte Chemie - International Edition, 2014, 53, 12590-12593.	7.2	164
62	In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor. Nano Letters, 2018, 18, 3368-3376.	4.5	163
63	Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 15586-15594.	5.2	162
64	Synthesis of Hierarchical Three-Dimensional Vanadium Oxide Microstructures as High-Capacity Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 3874-3879.	4.0	157
65	Templateâ€Assisted Formation of Rattleâ€ŧype V ₂ O ₅ Hollow Microspheres with Enhanced Lithium Storage Properties. Advanced Functional Materials, 2013, 23, 5669-5674.	7.8	154
66	Porosityâ€Controlled TiNb ₂ O ₇ Microspheres with Partial Nitridation as A Practical Negative Electrode for Highâ€Power Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1401945.	10.2	153
67	Growth of Ultrathin ZnCo ₂ O ₄ Nanosheets on Reduced Graphene Oxide with Enhanced Lithium Storage Properties. Advanced Science, 2015, 2, 1400014.	5.6	153
68	Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochemistry Communications, 2012, 20, 7-10.	2.3	151
69	In Situ Doping Boron Atoms into Porous Carbon Nanoparticles with Increased Oxygen Graft Enhances both Affinity and Durability toward Electrolyte for Greatly Improved Supercapacitive Performance. Advanced Functional Materials, 2018, 28, 1804190.	7.8	149
70	Graphene Caging Silicon Particles for Highâ€Performance Lithiumâ€lon Batteries. Small, 2018, 14, e1800635.	5.2	146
71	Strongly coupled carbon nanofiber–metal oxide coaxial nanocables with enhanced lithium storage properties. Energy and Environmental Science, 2014, 7, 302-305.	15.6	144
72	Fabrication of Hybrid Silicate Coatings by a Simple Vapor Deposition Method for Lithium Metal Anodes. Advanced Energy Materials, 2018, 8, 1701744.	10.2	138

#	Article	IF	CITATIONS
73	Regenerative Polysulfide-Scavenging Layers Enabling Lithium–Sulfur Batteries with High Energy Density and Prolonged Cycling Life. ACS Nano, 2017, 11, 2697-2705.	7.3	132
74	Mesoporous Single-crystal CoSn(OH)6 Hollow Structures with Multilevel Interiors. Scientific Reports, 2013, 3, 1391.	1.6	131
75	TiO ₂ nanotube arrays grafted with Fe ₂ O ₃ hollow nanorods as integrated electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 122-127.	5.2	130
76	Recent Progress of Hybrid Solid‣tate Electrolytes for Lithium Batteries. Chemistry - A European Journal, 2018, 24, 18293-18306.	1.7	127
77	Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage. CrystEngComm, 2013, 15, 9332.	1.3	124
78	One-dimensional metal oxide–carbon hybrid nanostructures for electrochemical energy storage. Nanoscale Horizons, 2016, 1, 27-40.	4.1	119
79	Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nature Communications, 2020, 11, 5215.	5.8	113
80	Sandwich-structured TiO2–Pt–graphene ternary hybrid electrocatalysts with high efficiency and stability. Journal of Materials Chemistry, 2012, 22, 16499.	6.7	112
81	An Improved Li–SeS ₂ Battery with High Energy Density and Long Cycle Life. Advanced Energy Materials, 2017, 7, 1700281.	10.2	111
82	Hierarchical Tubular Structures Constructed by Carbon oated αâ€Fe ₂ O ₃ Nanorods for Highly Reversible Lithium Storage. Small, 2014, 10, 1741-1745.	5.2	105
83	Unusual Formation of Singleâ€Crystal Manganese Sulfide Microboxes Coâ€mediated by the Cubic Crystal Structure and Shape. Angewandte Chemie - International Edition, 2012, 51, 7267-7270.	7.2	103
84	Preparation of Carbon-Coated NiCo ₂ O ₄ @SnO ₂ Hetero-nanostructures and Their Reversible Lithium Storage Properties. Small, 2015, 11, 432-436.	5.2	97
85	Ionic Liquidâ€Assisted Synthesis of TiO ₂ –Carbon Hybrid Nanostructures for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 1338-1346.	7.8	97
86	Templateâ€Free Synthesis of Hierarchical Vanadiumâ€Glycolate Hollow Microspheres and Their Conversion to V ₂ O ₅ with Improved Lithium Storage Capability. Chemistry - A European Journal, 2013, 19, 494-500.	1.7	96
87	Metal–Organic Framework-Assisted Synthesis of Compact Fe2O3 Nanotubes in Co3O4 Host with Enhanced Lithium Storage Properties. Nano-Micro Letters, 2018, 10, 44.	14.4	93
88	Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors. Nano Energy, 2016, 21, 80-89.	8.2	89
89	One-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture. Scientific Reports, 2016, 6, 30049.	1.6	82
90	Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Research, 2016, 9, 3209-3221.	5.8	78

#	Article	IF	CITATIONS
91	Robust iron nanoparticles with graphitic shells for high-performance Ni-Fe battery. Nano Energy, 2016, 30, 217-224.	8.2	76
92	Mesoporous single-crystal-like TiO2 mesocages threaded with carbon nanotubes for high-performance electrochemical energy storage. Nano Energy, 2017, 35, 44-51.	8.2	75
93	Ion-Transport-Rectifying Layer Enables Li-Metal Batteries with High Energy Density. Matter, 2020, 3, 1685-1700.	5.0	75
94	Synthesis of Uniform Layered Protonated Titanate Hierarchical Spheres and Their Transformation to Anatase TiO ₂ for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2012, 18, 2094-2099.	1.7	74
95	A General Method to Grow Porous αâ€Fe ₂ O ₃ Nanosheets on Substrates as Integrated Electrodes for Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2014, 1, 1400050.	1.9	74
96	Interfaceâ€Induced Pseudocapacitance in Nonporous Heterogeneous Particles for High Volumetric Sodium Storage. Advanced Functional Materials, 2020, 30, 2002019.	7.8	74
97	Anchoring anions with metal–organic framework-functionalized separators for advanced lithium batteries. Nanoscale Horizons, 2019, 4, 705-711.	4.1	71
98	Well-dispersed phosphorus nanocrystals within carbon via high-energy mechanical milling for high performance lithium storage. Nano Energy, 2019, 59, 464-471.	8.2	70
99	Synthesis of CoSe2 nanoparticles embedded in N-doped carbon with conformal TiO2 shell for sodium-ion batteries. Chemical Engineering Journal, 2019, 378, 122206.	6.6	69
100	Formation of Pt–TiO ₂ –rGO 3-phase junctions with significantly enhanced electro-activity for methanol oxidation. Physical Chemistry Chemical Physics, 2012, 14, 473-476.	1.3	67
101	Growth of SnO ₂ nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries. Materials Horizons, 2014, 1, 133-138.	6.4	66
102	Post Iron Decoration of Mesoporous Nitrogenâ€Doped Carbon Spheres for Efficient Electrochemical Oxygen Reduction. Advanced Energy Materials, 2017, 7, 1701154.	10.2	65
103	Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells. Nature Communications, 2020, 11, 1191.	5.8	65
104	Synthesis of micro-sized SnO2@carbon hollow spheres with enhanced lithium storage properties. Nanoscale, 2012, 4, 3651.	2.8	64
105	Fastening Br [–] Ions at Copper–Molecule Interface Enables Highly Efficient Electroreduction of CO ₂ to Ethanol. ACS Energy Letters, 2021, 6, 437-444.	8.8	62
106	Asymmetric anatase TiO2 nanocrystals with exposed high-index facets and their excellent lithium storage properties. Nanoscale, 2011, 3, 4082.	2.8	61
107	Bowlâ€ŀike SnO ₂ @Carbon Hollow Particles as an Advanced Anode Material for Lithiumâ€ŀon Batteries. Angewandte Chemie, 2014, 126, 13017-13021.	1.6	57
108	Tungstate-modulated Ni/Ni(OH) ₂ interface for efficient hydrogen evolution reaction in neutral media. Journal of Materials Chemistry A, 2021, 9, 1456-1462.	5.2	57

#	Article	IF	CITATIONS
109	Confined growth of small ZnO nanoparticles in a nitrogen-rich carbon framework: Advanced anodes for long-life Li-ion batteries. Carbon, 2017, 113, 46-54.	5.4	55
110	Cooperative stabilization of bi-electrodes with robust interphases for high-voltage lithium-metal batteries. Energy Storage Materials, 2021, 37, 521-529.	9.5	54
111	Self-organized sheaf-like Fe ₃ 0 ₄ /C hierarchical microrods with superior lithium storage properties. Nanoscale, 2015, 7, 4411-4414.	2.8	53
112	In-situ formation of ligand-stabilized bismuth nanosheets for efficient CO2 conversion. Applied Catalysis B: Environmental, 2021, 297, 120481.	10.8	52
113	Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium storage properties. CrystEngComm, 2012, 14, 5133.	1.3	50
114	Oneâ€₽ot Synthesis of Platinum Nanocubes on Reduced Graphene Oxide with Enhanced Electrocatalytic Activity. Small, 2014, 10, 2336-2339.	5.2	47
115	Oneâ€Pot Synthesis of Ultraâ€Light Nickel Nanofoams Composed of Nanowires and Their Transformation into Various Functional Nanofoams. Small, 2012, 8, 3432-3437.	5.2	46
116	Titania Nanosheets Hierarchically Assembled on Carbon Nanotubes as Highâ€Rate Anodes for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2012, 18, 3132-3135.	1.7	43
117	Encapsulation of SnO ₂ nanocrystals into hierarchically porous carbon by melt infiltration for high-performance lithium storage. Journal of Materials Chemistry A, 2016, 4, 18706-18710.	5.2	42
118	Hierarchically structured Pt/CNT@TiO ₂ nanocatalysts with ultrahigh stability for low-temperature fuel cells. RSC Advances, 2012, 2, 792-796.	1.7	41
119	Sustained-Release Nanocapsules Enable Long-Lasting Stabilization of Li Anode for Practical Li-Metal Batteries. Nano-Micro Letters, 2020, 12, 176.	14.4	41
120	Phosphorus-doping and oxygen vacancy endowing anatase TiO2 with excellent sodium storage performance. Rare Metals, 2022, 41, 1284-1293.	3.6	41
121	A Ternary Molten Salt Approach for Direct Regeneration of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode. Small, 2022, 18, e2106719.	5.2	41
122	Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes. CheM, 2022, 8, 2148-2162.	5.8	41
123	Particulate Anion Sorbents as Electrolyte Additives for Lithium Batteries. Advanced Functional Materials, 2020, 30, 2003055.	7.8	38
124	Low-coordinated cobalt arrays for efficient hydrazine electrooxidation. Energy and Environmental Science, 2022, 15, 3246-3256.	15.6	36
125	Molecular engineering to introduce carbonyl between nickel salophen active sites to enhance electrochemical CO2 reduction to methanol. Applied Catalysis B: Environmental, 2022, 314, 121451.	10.8	32
126	Use of regenerated cellulose to direct hetero-assembly of nanoparticles with carbon nanotubes for producing flexible battery anodes. Journal of Materials Chemistry A, 2017, 5, 13944-13949.	5.2	28

Hao-Bin Wu

#	Article	IF	CITATIONS
127	Recent advances in metal-based electrocatalysts with hetero-interfaces for CO2 reduction reaction. Chem Catalysis, 2022, 2, 262-291.	2.9	28
128	Synthesis of ZIF-67 nanocubes with complex structures co-mediated by dopamine and polyoxometalate. Journal of Materials Chemistry A, 2018, 6, 19338-19341.	5.2	26
129	Iron-decorated nitrogen-rich carbons as efficient oxygen reduction electrocatalysts for Zn–air batteries. Nanoscale, 2018, 10, 16996-17001.	2.8	25
130	Class of Solid-like Electrolytes for Rechargeable Batteries Based on Metal–Organic Frameworks Infiltrated with Liquid Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 43824-43832.	4.0	25
131	Quasi-solid electrolyte membranes with percolated metal–organic frameworks for practical lithium-metal batteries. Journal of Energy Chemistry, 2021, 52, 354-360.	7.1	22
132	Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical Conversion of CO2 to Multi-Carbon Products. Nano-Micro Letters, 2022, 14, .	14.4	20
133	Morphology-controlled fabrication of hierarchical mesoporous NiCo2O4 micro-/nanostructures and their intriguing application in electrochemical capacitors. RSC Advances, 2013, 3, 23709.	1.7	19
134	A high-rate and ultrastable anode enabled by boron-doped nanoporous carbon spheres for high-power and long life lithium ion capacitors. Materials Today Energy, 2018, 9, 428-439.	2.5	19
135	Covalently Bonded Si–Polymer Nanocomposites Enabled by Mechanochemical Synthesis as Durable Anode Materials. ACS Applied Materials & Interfaces, 2020, 12, 39127-39134.	4.0	18
136	Copper and carbon-incorporated yolk-shelled FeP spheres with enhanced sodium storage properties. Chemical Engineering Journal, 2021, 421, 127776.	6.6	16
137	CeO2-modified Cu electrode for efficient CO2 electroreduction to multi-carbon products. Journal of CO2 Utilization, 2021, 54, 101741.	3.3	16
138	Plasma-reduced Co(OH)2 with activated hydrogen evolution and overall water splitting performance. Sustainable Energy and Fuels, 2020, 4, 2645-2649.	2.5	15
139	Biodegradable MnFe-hydroxide nanocapsules to enable multi-therapeutics delivery and hypoxia-modulated tumor treatment. Journal of Materials Chemistry B, 2020, 8, 3929-3938.	2.9	10
140	Engineering Different Reaction Centers on Hierarchical Ni/NiFe Layered Double Hydroxide Accelerating Overall Water Splitting. ACS Applied Energy Materials, 2021, 4, 9858-9865.	2.5	9
141	Hierarchical Mn ₃ O ₄ Microplates Composed of Stacking Porous Nanosheets for Highâ€Performance Lithium Storage. ChemElectroChem, 2017, 4, 2703-2708.	1.7	8
142	Hollow Microspheres: Formation of ZnMn2O4 Ball-in-Ball Hollow Microspheres as a High-Performance Anode for Lithium-Ion Batteries (Adv. Mater. 34/2012). Advanced Materials, 2012, 24, 4590-4590.	11.1	4
143	Solvent sieving separators implement dual electrolyte for high-voltage lithium-metal batteries. Nano Research, 2023, 16, 4901-4907.	5.8	4
144	Plasma activation towards oxidized nanocarbons for efficient electrochemical synthesis of hydrogen peroxide. Plasma Science and Technology, 2021, 23, 025502.	0.7	2

#	Article	IF	CITATIONS
145	Lithiumâ€Ion Batteries: Ionic Liquidâ€Assisted Synthesis of TiO ₂ –Carbon Hybrid Nanostructures for Lithiumâ€Ion Batteries (Adv. Funct. Mater. 9/2016). Advanced Functional Materials, 2016, 26, 1487-1487.	7.8	1
146	A "two-in-one―integrated electrode design for high-energy rechargeable bipolar Li batteries. Journal of Materials Chemistry A, 0, , .	5.2	1
147	Innenrücktitelbild: Microwave-Assisted Synthesis of Porous Ag2S-Ag Hybrid Nanotubes with High Visible-Light Photocatalytic Activity (Angew. Chem. 46/2012). Angewandte Chemie, 2012, 124, 11807-11807.	1.6	0