Masanobu Kano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2742134/publications.pdf

Version: 2024-02-01

244 papers

24,534 citations

84 h-index 148

287 all docs

287 docs citations

times ranked

287

18054 citing authors

g-index

#	Article	IF	CITATIONS
1	Endocannabinoid-Mediated Control of Synaptic Transmission. Physiological Reviews, 2009, 89, 309-380.	13.1	1,262
2	Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science, 2018, 359, 679-684.	6.0	856
3	Endogenous Cannabinoids Mediate Retrograde Signals from Depolarized Postsynaptic Neurons to Presynaptic Terminals. Neuron, 2001, 29, 729-738.	3.8	754
4	Presynaptic Inhibition Caused by Retrograde Signal from Metabotropic Glutamate to Cannabinoid Receptors. Neuron, 2001, 31, 463-475.	3.8	496
5	Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 1982, 33, 253-258.	1.0	494
6	Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature, 1992, 356, 601-604.	13.7	441
7	Impaired synapse elimination during cerebellar development in PKCγ mutant mice. Cell, 1995, 83, 1223-1231.	13.5	426
8	Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKC \hat{I}^3 mutant mice. Cell, 1995, 83, 1233-1242.	13.5	410
9	The Endocannabinoid 2-Arachidonoylglycerol Produced by Diacylglycerol Lipase α Mediates Retrograde Suppression of Synaptic Transmission. Neuron, 2010, 65, 320-327.	3.8	407
10	The CB1 Cannabinoid Receptor Is the Major Cannabinoid Receptor at Excitatory Presynaptic Sites in the Hippocampus and Cerebellum. Journal of Neuroscience, 2006, 26, 2991-3001.	1.7	399
11	mGluR1 in Cerebellar Purkinje Cells Essential for Long-Term Depression, Synapse Elimination, and Motor Coordination. Science, 2000, 288, 1832-1835.	6.0	396
12	Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. European Journal of Neuroscience, 1998, 10, 976-988.	1.2	369
13	Subcellular Arrangement of Molecules for 2-Arachidonoyl-Glycerol-Mediated Retrograde Signaling and Its Physiological Contribution to Synaptic Modulation in the Striatum. Journal of Neuroscience, 2007, 27, 3663-3676.	1.7	340
14	Consensus Paper: Cerebellar Development. Cerebellum, 2016, 15, 789-828.	1.4	337
15	Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nature Methods, 2008, 5, 61-67.	9.0	332
16	A Long CAG Repeat in the Mouse Sca1 Locus Replicates SCA1 Features and Reveals the Impact of Protein Solubility on Selective Neurodegeneration. Neuron, 2002, 34, 905-919.	3.8	320
17	Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature, 1987, 325, 276-279.	13.7	316
18	Localization of Diacylglycerol Lipase-Â around Postsynaptic Spine Suggests Close Proximity between Production Site of an Endocannabinoid, 2-Arachidonoyl-glycerol, and Presynaptic Cannabinoid CB1 Receptor. Journal of Neuroscience, 2006, 26, 4740-4751.	1.7	302

#	Article	IF	Citations
19	Persistent Multiple Climbing Fiber Innervationof Cerebellar Purkinje Cellsin Mice Lacking mGluR1. Neuron, 1997, 18, 71-79.	3.8	288
20	Phospholipase \hat{Cl}^2 Serves as a Coincidence Detector through Its Ca2+ Dependency for Triggering Retrograde Endocannabinoid Signal. Neuron, 2005, 45, 257-268.	3.8	284
21	Locally Synchronized Synaptic Inputs. Science, 2012, 335, 353-356.	6.0	280
22	Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Research, 1985, 342, 357-360.	1.1	273
23	Impaired Parallel Fiber→Purkinje Cell Synapse Stabilization during Cerebellar Development of Mutant Mice Lacking the Glutamate Receptor δ2 Subunit. Journal of Neuroscience, 1997, 17, 9613-9623.	1.7	271
24	Presynaptic Cannabinoid Sensitivity Is a Major Determinant of Depolarization-Induced Retrograde Suppression at Hippocampal Synapses. Journal of Neuroscience, 2002, 22, 3864-3872.	1.7	269
25	Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking GÂq. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14089-14094.	3.3	252
26	Impairment of AMPA Receptor Function in Cerebellar Granule Cells of Ataxic Mutant Mouse <i>Stargazer</i> . Journal of Neuroscience, 1999, 19, 6027-6036.	1.7	245
27	Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nature Methods, 2015, 12, 64-70.	9.0	234
28	Local Calcium Release in Dendritic Spines Required for Long-Term Synaptic Depression. Neuron, 2000, 28, 233-244.	3.8	233
29	Synaptically Driven Endocannabinoid Release Requires Ca2+-Assisted Metabotropic Glutamate Receptor Subtype 1 to Phospholipase C Â4 Signaling Cascade in the Cerebellum. Journal of Neuroscience, 2005, 25, 6826-6835.	1.7	223
30	Functional Differentiation of Multiple Climbing Fiber Inputs during Synapse Elimination in the Developing Cerebellum. Neuron, 2003, 38, 785-796.	3.8	221
31	Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and M1/M3-mediated indirect suppression through endocannabinoid signalling. European Journal of Neuroscience, 2004, 19, 2682-2692.	1.2	220
32	Ablation of Cerebellar Golgi Cells Disrupts Synaptic Integration Involving GABA Inhibition and NMDA Receptor Activation in Motor Coordination. Cell, 1998, 95, 17-27.	13.5	210
33	Rational Engineering of XCaMPs, a Multicolor GECI Suite for InÂVivo Imaging of Complex Brain Circuit Dynamics. Cell, 2019, 177, 1346-1360.e24.	13.5	199
34	Endocannabinoid-mediated retrograde modulation of synaptic transmission. Current Opinion in Neurobiology, 2014, 29, 1-8.	2.0	192
35	Phospholipase CÂ4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15724-15729.	3.3	177
36	L-Serine and glycine serve as major astroglia-derived trophic factors for cerebellar Purkinje neurons. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11528-11533.	3.3	175

3

#	Article	IF	CITATIONS
37	Intradendritic release of calcium induced by glutamate in cerebellar purkinje cells. Neuron, 1991, 7, 577-583.	3.8	166
38	Critical Period for Activity-Dependent Synapse Elimination in Developing Cerebellum. Journal of Neuroscience, 2000, 20, 4954-4961.	1.7	166
39	Functional labeling of neurons and their projections using the synthetic activity–dependent promoter E-SARE. Nature Methods, 2013, 10, 889-895.	9.0	166
40	Endocannabinoids and Synaptic Function in the CNS. Neuroscientist, 2007, 13, 127-137.	2.6	165
41	Presynaptic Monoacylglycerol Lipase Activity Determines Basal Endocannabinoid Tone and Terminates Retrograde Endocannabinoid Signaling in the Hippocampus. Journal of Neuroscience, 2007, 27, 1211-1219.	1.7	163
42	Synapse elimination in the central nervous system. Current Opinion in Neurobiology, 2009, 19, 154-161.	2.0	161
43	Translocation of a "Winner―Climbing Fiber to the Purkinje Cell Dendrite and Subsequent Elimination of "Losers―from the Soma in Developing Cerebellum. Neuron, 2009, 63, 106-118.	3.8	161
44	The Cannabinoid CB1 Receptor Mediates Retrograde Signals for Depolarization-Induced Suppression of Inhibition in Cerebellar Purkinje Cells. Journal of Neuroscience, 2002, 22, 1690-1697.	1.7	159
45	Distal Extension of Climbing Fiber Territory and Multiple Innervation Caused by Aberrant Wiring to Adjacent Spiny Branchlets in Cerebellar Purkinje Cells Lacking Glutamate Receptor Î 2. Journal of Neuroscience, 2002, 22, 8487-8503.	1.7	159
46	<i>In vivo</i> twoâ€photon uncaging of glutamate revealing the structure–function relationships of dendritic spines in the neocortex of adult mice. Journal of Physiology, 2011, 589, 2447-2457.	1.3	157
47	Cooperative endocannabinoid production by neuronal depolarization and group I metabotropic glutamate receptor activation. European Journal of Neuroscience, 2002, 15, 953-961.	1.2	156
48	Signaling complex formation of phospholipase $C\hat{l}^24$ with metabotropic glutamate receptor type $1\hat{l}_{\pm}$ and $1,4,5$ -trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. European Journal of Neuroscience, 2004, 20, 2929-2944.	1.2	156
49	Roles of Glutamate Receptor Î'2 Subunit (GluRÎ'2) and Metabotropic Glutamate Receptor Subtype 1 (mGluR1) in Climbing Fiber Synapse Elimination during Postnatal Cerebellar Development. Journal of Neuroscience, 2001, 21, 9701-9712.	1.7	152
50	Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus. European Journal of Neuroscience, 2003, 18, 109-116.	1.2	152
51	Transsynaptic Modulation of Kainate Receptor Functions by C1q-like Proteins. Neuron, 2016, 90, 752-767.	3.8	150
52	Angiotensin Receptor Blocker Prevented \hat{l}^2 -Amyloid-Induced Cognitive Impairment Associated With Recovery of Neurovascular Coupling. Hypertension, 2009, 54, 1345-1352.	1.3	144
53	Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nature Communications, 2014, 5, 5586.	5.8	144
54	Potentiation of GABA-mediated currents by cAMP-dependent protein kinase. NeuroReport, 1992, 3, 563-566.	0.6	142

#	Article	IF	Citations
55	Climbing fiber synapse elimination in cerebellar Purkinje cells. European Journal of Neuroscience, 2011, 34, 1697-1710.	1.2	137
56	P/Q-Type Ca2+ Channel Â1A Regulates Synaptic Competition on Developing Cerebellar Purkinje Cells. Journal of Neuroscience, 2004, 24, 1734-1743.	1.7	134
57	Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase $\hat{Cl^2}$ in mouse brain. European Journal of Neuroscience, 1998, 10, 2016-2025.	1.2	132
58	Abundant distribution of TARP \hat{I}^3 -8 in synaptic and extrasynaptic surface of hippocampal neurons and its major role in AMPA receptor expression on spines and dendrites. European Journal of Neuroscience, 2006, 24, 2177-2190.	1.2	126
59	Astroglial Glutamate Transporter Deficiency Increases Synaptic Excitability and Leads to Pathological Repetitive Behaviors in Mice. Neuropsychopharmacology, 2015, 40, 1569-1579.	2.8	126
60	Tonic Enhancement of Endocannabinoid-Mediated Retrograde Suppression of Inhibition by Cholinergic Interneuron Activity in the Striatum. Journal of Neuroscience, 2007, 27, 496-506.	1.7	125
61	Endogenous cannabinoid as a retrograde messenger from depolarized postsynaptic neurons to presynaptic terminals. Neuroscience Research, 2001, 40, 205-210.	1.0	124
62	Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nature Reviews Neuroscience, 2015, 16, 264-277.	4.9	124
63	Plasticity of inhibitory synapses in the brain: a possible memory mechanism that has been overlooked. Neuroscience Research, 1995, 21, 177-182.	1.0	122
64	Corticotropin-Releasing Factor Plays a Permissive Role in Cerebellar Long-Term Depression. Neuron, 1999, 22, 763-775.	3.8	122
65	Ca2+-induced rebound potentiation of Â-aminobutyric acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13351-13356.	3.3	121
66	A highly sensitive fluorescent indicator dye for calcium imaging of neural activity <i>in vitro</i> and <i>in vivo</i> . European Journal of Neuroscience, 2014, 39, 1720-1728.	1.2	120
67	Gq protein $\hat{l}\pm$ subunits $\hat{Gl}\pm q$ and $\hat{Gl}\pm 11$ are localized at postsynaptic extra-junctional membrane of cerebellar Purkinje cells and hippocampal pyramidal cells. European Journal of Neuroscience, 2000, 12, 781-792.	1.2	118
68	Synapse elimination in the developing cerebellum. Cellular and Molecular Life Sciences, 2013, 70, 4667-4680.	2.4	118
69	Endogenous Cannabinoid Signaling through the CB1 Receptor Is Essential for Cerebellum-Dependent Discrete Motor Learning. Journal of Neuroscience, 2006, 26, 8829-8837.	1.7	117
70	Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neuroscience Research, 1989, 6, 264-268.	1.0	115
71	Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science, 2014, 344, 1020-1023.	6.0	115
72	Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell synapses in the rat cerebellum. Journal of Physiology, 1998, 506, 391-405.	1.3	111

#	Article	IF	CITATIONS
73	Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C Î ² 4 mutant mice. European Journal of Neuroscience, 2001, 13, 1945-1954.	1.2	106
74	Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16952-16957.	3.3	104
75	Postsynaptic P/Q-type Ca ²⁺ channel in Purkinje cell mediates synaptic competition and elimination in developing cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9987-9992.	3.3	103
76	Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neuroscience Research, 2005, 53, 221-228.	1.0	102
77	PSD-93 Knock-Out Mice Reveal That Neuronal MAGUKs Are Not Required for Development or Function of Parallel Fiber Synapses in Cerebellum. Journal of Neuroscience, 2001, 21, 3085-3091.	1.7	101
78	Type-1 metabotropic glutamate receptor in cerebellar Purkinje cells: a key molecule responsible for long-term depression, endocannabinoid signalling and synapse elimination. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2173-2186.	1.8	100
79	Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal neurons in basal amygdaloid nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3059-3064.	3.3	100
80	Control of synaptic function by endocannabinoid-mediated retrograde signaling. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2014, 90, 235-250.	1.6	98
81	Arc/Arg3.1 Is a Postsynaptic Mediator of Activity-Dependent Synapse Elimination in the Developing Cerebellum. Neuron, 2013, 78, 1024-1035.	3.8	96
82	Functional Coupling between mGluR1 and Ca _v 3.1 T-Type Calcium Channels Contributes to Parallel Fiber-Induced Fast Calcium Signaling within Purkinje Cell Dendritic Spines. Journal of Neuroscience, 2009, 29, 9668-9682.	1.7	93
83	Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nature Communications, 2017, 8, 195.	5.8	91
84	GABAergic Inhibition Regulates Developmental Synapse Elimination in the Cerebellum. Neuron, 2012, 74, 384-396.	3.8	90
85	Influence of parallel fiber–Purkinje cell synapse formation on postnatal development of climbing fiber–Purkinje cell synapses in the cerebellum. Neuroscience, 2009, 162, 601-611.	1.1	87
86	Depolarization-induced suppression of inhibition mediated by endocannabinoids at synapses from fast-spiking interneurons to medium spiny neurons in the striatum. European Journal of Neuroscience, 2006, 24, 2246-2252.	1.2	86
87	Involvement of NMDAR2A tyrosine phosphorylation in depression-related behaviour. EMBO Journal, 2009, 28, 3717-3729.	3.5	86
88	Spatiotemporal Dynamics of Functional Clusters of Neurons in the Mouse Motor Cortex during a Voluntary Movement. Journal of Neuroscience, 2013, 33, 1377-1390.	1.7	86
89	A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. Journal of Neuroscience Methods, 2000, 104, 45-53.	1.3	85
90	Pharmacological evidence for the involvement of diacylglycerol lipase in depolarization-induced endocanabinoid release. Neuropharmacology, 2008, 54, 58-67.	2.0	83

#	Article	IF	Citations
91	Endocannabinoids and Retrograde Modulation of Synaptic Transmission. Neuroscientist, 2012, 18, 119-132.	2.6	82
92	Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nature Communications, 2020, 11, 5140.	5.8	82
93	Selective Activation of mTORC1 Signaling Recapitulates Microcephaly, Tuberous Sclerosis, and Neurodegenerative Diseases. Cell Reports, 2014, 7, 1626-1639.	2.9	80
94	A novel action of stargazin as an enhancer of AMPA receptor activity. Neuroscience Research, 2004, 50, 369-374.	1.0	79
95	LTD-like molecular pathways in developmental synaptic pruning. Nature Neuroscience, 2016, 19, 1299-1310.	7.1	79
96	TARPs γâ€⊋ and γâ€₹ are essential for AMPA receptor expression in the cerebellum. European Journal of Neuroscience, 2010, 31, 2204-2220.	1.2	76
97	Molecular and Morphological Configuration for 2-Arachidonoylglycerol-Mediated Retrograde Signaling at Mossy Cell–Granule Cell Synapses in the Dentate Gyrus. Journal of Neuroscience, 2011, 31, 7700-7714.	1.7	75
98	Mode of induction of long-term depression at parallel fibreâ€"Purkinje cell synapses in rabbit cerebellar cortex. Neuroscience Research, 1988, 5, 544-556.	1.0	74
99	Fractional calcium current through neuronal AMPA-receptor channels with a low calcium permeability. Journal of Neuroscience, 1996, 16, 456-466.	1.7	74
100	Distinct Roles of GÂq and GÂ11 for Purkinje Cell Signaling and Motor Behavior. Journal of Neuroscience, 2004, 24, 5119-5130.	1.7	74
101	Ca _v 2.1 in Cerebellar Purkinje Cells Regulates Competitive Excitatory Synaptic Wiring, Cell Survival, and Cerebellar Biochemical Compartmentalization. Journal of Neuroscience, 2012, 32, 1311-1328.	1.7	74
102	Ca2+-assisted receptor-driven endocannabinoid release: mechanisms that associate presynaptic and postsynaptic activities. Current Opinion in Neurobiology, 2007, 17, 360-365.	2.0	73
103	Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory Consolidation. Neuron, 2020, 107, 552-565.e10.	3.8	73
104	Functional reorganization of adult cat somatosensory cortex is dependent on NMDA receptors. NeuroReport, 1991, 2, 77-80.	0.6	71
105	The Synaptic Targeting of mGluR1 by Its Carboxyl-Terminal Domain Is Crucial for Cerebellar Function. Journal of Neuroscience, 2014, 34, 2702-2712.	1.7	71
106	mGluR1 in cerebellar Purkinje cells is required for normal association of temporally contiguous stimuli in classical conditioning. European Journal of Neuroscience, 2002, 16, 2416-2424.	1.2	70
107	Impaired motor coordination in mice lacking neural recognition molecule NB-3 of the contactin/F3 subgroup. Journal of Neurobiology, 2003, 56, 252-265.	3.7	69
108	ORP150/HSP12A Regulates Purkinje Cell Survival: A Role for Endoplasmic Reticulum Stress in Cerebellar Development. Journal of Neuroscience, 2004, 24, 1486-1496.	1.7	69

#	Article	IF	Citations
109	Disturbance of cerebellar synaptic maturation in mutant mice lacking BSRPs, a novel brain-specific receptor-like protein family. FEBS Letters, 2006, 580, 4057-4064.	1.3	69
110	Motor Discoordination in Mutant Mice Lacking Junctophilin Type 3. Biochemical and Biophysical Research Communications, 2002, 292, 318-324.	1.0	68
111	Protocadherin 17 Regulates Presynaptic Assembly in Topographic Corticobasal Ganglia Circuits. Neuron, 2013, 78, 839-854.	3.8	67
112	Structure–Function Relationships between Aldolase C/Zebrin II Expression and Complex Spike Synchrony in the Cerebellum. Journal of Neuroscience, 2015, 35, 843-852.	1.7	66
113	Territories of heterologous inputs onto Purkinje cell dendrites are segregated by mGluR1-dependent parallel fiber synapse elimination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2282-2287.	3.3	66
114	Climbing fiber synapse elimination during postnatal cerebellar development requires signal transduction involving Gαq and phospholipase Cβ4. Progress in Brain Research, 2000, 124, 31-48.	0.9	64
115	Miniature Synaptic Events Elicited by Presynaptic Ca2+ Rise Are Selectively Suppressed by Cannabinoid Receptor Activation in Cerebellar Purkinje Cells. Journal of Neuroscience, 2006, 26, 86-95.	1.7	64
116	Serotonin rebalances cortical tuning and behavior linked to autism symptoms in 15q11-13 CNV mice. Science Advances, 2017, 3, e1603001.	4.7	64
117	Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16690-16695.	3.3	61
118	Maintenance of presynaptic function by AMPA receptor-mediated excitatory postsynaptic activity in adult brain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19180-19185.	3.3	60
119	Crucial Roles of the Endocannabinoid 2-Arachidonoylglycerol in the Suppression of Epileptic Seizures. Cell Reports, 2016, 16, 1405-1415.	2.9	60
120	Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum. Cerebellum, 2018, 17, 722-734.	1.4	60
121	Modest Neuropsychological Deficits Caused by Reduced Noradrenaline Metabolism in Mice Heterozygous for a Mutated Tyrosine Hydroxylase Gene. Journal of Neuroscience, 2000, 20, 2418-2426.	1.7	59
122	Activity-Dependent Gating of Calcium Spikes by A-type K+ Channels Controls Climbing Fiber Signaling in Purkinje Cell Dendrites. Neuron, 2014, 84, 137-151.	3.8	59
123	Hippocampal CA3 NMDA Receptors Are Crucial for Adaptive Timing of Trace Eyeblink Conditioned Response. Journal of Neuroscience, 2006, 26, 1562-1570.	1.7	58
124	Junctophilin-mediated channel crosstalk essential for cerebellar synaptic plasticity. EMBO Journal, 2007, 26, 1924-1933.	3.5	57
125	Complementary synaptic distribution of enzymes responsible for synthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in the human hippocampus. Neuroscience, 2011, 174, 50-63.	1.1	55
126	Glutamate transporter GLAST controls synaptic wrapping by Bergmann glia and ensures proper wiring of Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7438-7443.	3.3	54

#	Article	IF	Citations
127	Effects of insulin-like growth factor I on climbing fibre synapse elimination during cerebellar development. European Journal of Neuroscience, 2003, 17, 545-554.	1.2	53
128	Developmental Switching of Perisomatic Innervation from Climbing Fibers to Basket Cell Fibers in Cerebellar Purkinje Cells. Journal of Neuroscience, 2011, 31, 16916-16927.	1.7	52
129	Endocannabinoid signalling triggered by NMDA receptorâ€mediated calcium entry into rat hippocampal neurons. Journal of Physiology, 2007, 584, 407-418.	1.3	51
130	Postsynaptic GABA _B receptor signalling enhances LTD in mouse cerebellar Purkinje cells. Journal of Physiology, 2007, 585, 549-563.	1.3	51
131	Validation of Aβ1–40 administration into mouse cerebroventricles as an animal model for Alzheimer disease. Brain Research, 2009, 1280, 137-147.	1.1	51
132	Acute inhibition of diacylglycerol lipase blocks endocannabinoidâ€mediated retrograde signalling: evidence for onâ€demand biosynthesis of 2â€arachidonoylglycerol. Journal of Physiology, 2013, 591, 4765-4776.	1.3	50
133	Supramammillary Nucleus Afferents to the Dentate Gyrus Co-release Glutamate and GABA and Potentiate Granule Cell Output. Cell Reports, 2018, 25, 2704-2715.e4.	2.9	49
134	Calcium signaling and synaptic modulation: Regulation of endocannabinoid-mediated synaptic modulation by calcium. Cell Calcium, 2005, 38, 369-374.	1.1	48
135	Role of pre- and postsynaptic activity in thalamocortical axon branching. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7562-7567.	3.3	48
136	Group I Metabotropic Glutamate Receptor Signaling via $\widehat{Gl} \pm q/\widehat{Gl} \pm 11$ Secures the Induction of Long-Term Potentiation in the Hippocampal Area CA1. Journal of Neuroscience, 2002, 22, 8379-8390.	1.7	47
137	Endocannabinoid-mediated short-term suppression of excitatory synaptic transmission to medium spiny neurons in the striatum. Neuroscience Research, 2006, 54, 159-164.	1.0	47
138	Involvement of proteinâ€tyrosine phosphatase PTPMEG in motor learning and cerebellar longâ€term depression. European Journal of Neuroscience, 2007, 26, 2269-2278.	1,2	47
139	Long-lasting potentiation of GABAergic inhibitory synaptic transmission in cerebellar Purkinje cells: Its properties and possible mechanisms. Behavioral and Brain Sciences, 1996, 19, 354-361.	0.4	46
140	Synapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12195-12200.	3.3	44
141	Setd1a Insufficiency in Mice Attenuates Excitatory Synaptic Function and Recapitulates Schizophrenia-Related Behavioral Abnormalities. Cell Reports, 2020, 32, 108126.	2.9	44
142	Calcium-Dependent Persistent Facilitation of Spike Backpropagation in the CA1 Pyramidal Neurons. Journal of Neuroscience, 2000, 20, 4878-4884.	1.7	42
143	Insulin-like growth factor-l as a promoting factor for cerebellar Purkinje cell development. European Journal of Neuroscience, 2003, 17, 2006-2016.	1.2	42
144	Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders. Nature Communications, 2016, 7, 10594.	5.8	42

#	Article	IF	Citations
145	The glutamate receptor subtype mediating parallel fibre-Purkinje cell transmission in rabbit cerebellar cortex. Neuroscience Research, 1988, 5, 325-337.	1.0	40
146	Roles of Phospholipase \hat{Cl}^24 in Synapse Elimination and Plasticity in Developing and Mature Cerebellum. Molecular Neurobiology, 2001, 23, 69-82.	1.9	40
147	Extracellular Calcium Controls the Dynamic Range of Neuronal Metabotropic Glutamate Receptor Responses. Molecular and Cellular Neurosciences, 2002, 20, 56-68.	1.0	40
148	Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. ELife, 2019, 8,	2.8	40
149	Diminished climbing fiber innervation of Purkinje cells in the cerebellum of myosin Va mutant mice and rats. Developmental Neurobiology, 2007, 67, 909-923.	1.5	39
150	Severe neurological phenotypes of Q129 DRPLA transgenic mice serendipitously created by en masse expansion of CAG repeats in Q76 DRPLA mice. Human Molecular Genetics, 2009, 18, 723-736.	1.4	38
151	Dendritic calcium signaling in cerebellar Purkinje cell. Neural Networks, 2013, 47, 11-17.	3.3	35
152	Spike timing-dependent selective strengthening of single climbing fibre inputs to Purkinje cells during cerebellar development. Nature Communications, 2013, 4, 2732.	5.8	35
153	Metabotropic glutamate receptor subtype-1 is essential for motor coordination in the adult cerebellum. Neuroscience Research, 2007, 57, 538-543.	1.0	34
154	Roles of phospholipase Cβ and NMDA receptor in activityâ€dependent endocannabinoid release. Journal of Physiology, 2007, 584, 373-380.	1.3	34
155	Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. III. Cerebellar input to corticofugal neurons destined for different subcortical nuclei in areas 4 and 6. Neuroscience Research, 1986, 3, 321-344.	1.0	32
156	A Role for Myosin Va in Cerebellar Plasticity and Motor Learning: A Possible Mechanism Underlying Neurological Disorder in Myosin Va Disease. Journal of Neuroscience, 2011, 31, 6067-6078.	1.7	32
157	lonic Basis for Membrane Potential Resonance in Neurons of the Inferior Olive. Cell Reports, 2016, 16, 994-1004.	2.9	32
158	Type-1 metabotropic glutamate receptor signaling in cerebellar Purkinje cells in health and disease. F1000Research, 2017, 6, 416.	0.8	32
159	GABAergic activation of an inwardly rectifying K+current in mouse cerebellar Purkinje cells. Journal of Physiology, 2005, 563, 443-457.	1.3	30
160	Fever Is Mediated by Conversion of Endocannabinoid 2-Arachidonoylglycerol to Prostaglandin E2. PLoS ONE, 2015, 10, e0133663.	1.1	30
161	The Metabotropic Glutamate Receptor Subtype 1 Mediates Experience-Dependent Maintenance of Mature Synaptic Connectivity in the Visual Thalamus. Neuron, 2016, 91, 1097-1109.	3.8	30
162	Retrograde Signaling from Progranulin to Sort1 Counteracts Synapse Elimination in the Developing Cerebellum. Neuron, 2018, 97, 796-805.e5.	3.8	30

#	Article	IF	Citations
163	Comprehensive analysis of a novel mouse model of the 22q11.2 deletion syndrome: a model with the most common 3.0-Mb deletion at the human 22q11.2 locus. Translational Psychiatry, 2020, 10, 35.	2.4	30
164	Task-specific enhancement of hippocampus-dependent learning in mice deficient in monoacylglycerol lipase, the major hydrolyzing enzyme of the endocannabinoid 2-arachidonoylglycerol. Frontiers in Behavioral Neuroscience, 2015, 9, 134.	1.0	29
165	Developmental synapse remodeling in the cerebellum and visual thalamus. F1000Research, 2019, 8, 1191.	0.8	29
166	G protein-independent neuromodulatory action of adenosine on metabotropic glutamate signalling in mouse cerebellar Purkinje cells. Journal of Physiology, 2007, 581, 693-708.	1.3	27
167	Organotypic Coculture Preparation for the Study of Developmental Synapse Elimination in Mammalian Brain. Journal of Neuroscience, 2012, 32, 11657-11670.	1.7	26
168	Activity-Dependent Maturation of Climbing Fiber to Purkinje Cell Synapses during Postnatal Cerebellar Development. Cerebellum, 2012, 11, 449-450.	1.4	26
169	Functional Cooperation of Metabotropic Adenosine and Glutamate Receptors Regulates Postsynaptic Plasticity in the Cerebellum. Journal of Neuroscience, 2013, 33, 18661-18671.	1.7	24
170	Monoacylglycerol lipase deficiency affects dietâ€induced obesity, fat absorption, and feeding behavior in CB ₁ cannabinoid receptorâ€"deficient mice. FASEB Journal, 2019, 33, 2484-2497.	0.2	24
171	AUTS2 Governs Cerebellar Development, Purkinje Cell Maturation, Motor Function and Social Communication. IScience, 2020, 23, 101820.	1.9	24
172	Formation of hippocampal synapses on patterned substrates of a laminin-derived synthetic peptide. European Journal of Neuroscience, 2000, 12, 903-910.	1.2	23
173	Diacylglycerol lipase $\hat{l}\pm$ manipulation reveals developmental roles for intercellular endocannabinoid signaling. Scientific Reports, 2013, 3, 2093.	1.6	23
174	Control of excessive neural circuit excitability and prevention of epileptic seizures by endocannabinoid signaling. Cellular and Molecular Life Sciences, 2018, 75, 2793-2811.	2.4	22
175	Neuronal Protease-Activated Receptor 1 Drives Synaptic Retrograde Signaling Mediated by the Endocannabinoid 2-Arachidonoylglycerol. Journal of Neuroscience, 2011, 31, 3104-3109.	1.7	21
176	Calcium Dependence of Native Metabotropic Glutamate Receptor Signaling in Central Neurons. Molecular Neurobiology, 2004, 29, 261-270.	1.9	20
177	The p250GAP Gene Is Associated with Risk for Schizophrenia and Schizotypal Personality Traits. PLoS ONE, 2012, 7, e35696.	1.1	20
178	Disruption of cerebellar microzonal organization in GluD2 (GluRδ2) knockout mouse. Frontiers in Neural Circuits, 2013, 7, 130.	1.4	20
179	Retrograde signaling at central synapses via endogenous cannabinoids. Molecular Psychiatry, 2002, 7, 234-235.	4.1	19
180	GABA B receptorâ€mediated modulation of glutamate signaling in cerebellar Purkinje cells. Cerebellum, 2006, 5, 127-133.	1.4	19

#	Article	IF	Citations
181	Not glutamate but endocannabinoids mediate retrograde suppression of cerebellar parallel fiber to Purkinje cell synaptic transmission in young adult rodents. Neuropharmacology, 2009, 57, 157-163.	2.0	19
182	Global Scaling Down of Excitatory Postsynaptic Responses in Cerebellar Purkinje Cells Impairs Developmental Synapse Elimination. Cell Reports, 2014, 8, 1119-1129.	2.9	19
183	Maturation of Cerebellar Purkinje Cell Population Activity during Postnatal Refinement of Climbing Fiber Network. Cell Reports, 2017, 21, 2066-2073.	2.9	19
184	Depolarization-induced calcium signals in the somata of cerebellar Purkinje neurons. Neuroscience Research, 1995, 24, 87-95.	1.0	18
185	A recurrent <i>PJA1</i> variant in trigonocephaly and neurodevelopmental disorders. Annals of Clinical and Translational Neurology, 2020, 7, 1117-1131.	1.7	18
186	A Glial-Neuronal Circuit in the Median Eminence Regulates Thyrotropin-Releasing Hormone-Release via the Endocannabinoid System. IScience, 2020, 23, 100921.	1.9	18
187	Heterosynaptic expression of depolarization-induced suppression of inhibition (DSI) in rat hippocampal cultures. Neuroscience Research, 2000, 36, 67-71.	1.0	17
188	Heterogeneous Intrinsic Firing Properties of Vertebrate Retinal Ganglion Cells. Journal of Neurophysiology, 2002, 87, 30-41.	0.9	17
189	A mutant HCN4 channel in a family with bradycardia, left bundle branch block, and left ventricular noncompaction. Heart and Vessels, 2018, 33, 802-819.	0.5	17
190	Calciumâ€dependent regulation of climbing fibre synapse elimination during postnatal cerebellar development. Journal of Physiology, 2013, 591, 3151-3158.	1.3	16
191	The Endocannabinoid 2-Arachidonoylglycerol Negatively Regulates Habituation by Suppressing Excitatory Recurrent Network Activity and Reducing Long-Term Potentiation in the Dentate Gyrus. Journal of Neuroscience, 2013, 33, 3588-3601.	1.7	16
192	Heterogeneous presynaptic distribution of monoacylglycerol lipase, a multipotent regulator of nociceptive circuits in the mouse spinal cord. European Journal of Neuroscience, 2014, 39, 419-434.	1.2	16
193	Augmented tonic pain-related behavior in knockout mice lacking monoacylglycerol lipase, a major degrading enzyme for the endocannabinoid 2-arachidonoylglycerol. Behavioural Brain Research, 2014, 271, 51-58.	1.2	16
194	Type 1 metabotropic glutamate receptor and its signaling molecules as therapeutic targets for the treatment of cerebellar disorders. Current Opinion in Pharmacology, 2018, 38, 51-58.	1.7	16
195	Presynaptic Mechanisms Mediating Retrograde Semaphorin Signals for Climbing Fiber Synapse Elimination During Postnatal Cerebellar Development. Cerebellum, 2018, 17, 17-22.	1.4	16
196	mGluR1 signaling in cerebellar Purkinje cells: Subcellular organization and involvement in cerebellar function and disease. Neuropharmacology, 2021, 194, 108629.	2.0	16
197	GABAB Receptor-Mediated Modulation of Metabotropic Glutamate Signaling and Synaptic Plasticity in Central Neurons. Advances in Pharmacology, 2010, 58, 149-173.	1.2	15
198	Contribution of postsynaptic Tâ€type calcium channels to parallel fibreâ€Purkinje cell synaptic responses. Journal of Physiology, 2016, 594, 915-936.	1.3	15

#	Article	IF	CITATIONS
199	Hyperactivation of mTORC1 disrupts cellular homeostasis in cerebellar Purkinje cells. Scientific Reports, 2019, 9, 2799.	1.6	15
200	Improved hyperacuity estimation of spike timing from calcium imaging. Scientific Reports, 2020, 10, 17844.	1.6	15
201	Motor discoordination of transgenic mice overexpressing a microtubule destabilizer, stathmin, specifically in Purkinje cells. Neuroscience Research, 2007, 59, 93-100.	1.0	13
202	Spatiotemporal dynamics of lesion-induced axonal sprouting and its relation to functional architecture of the cerebellum. Nature Communications, 2016, 7, 12938.	5.8	13
203	Endocannabinoid-Mediated Control of Neural Circuit Excitability and Epileptic Seizures. Frontiers in Neural Circuits, 2021, 15, 781113.	1.4	13
204	Combined glyoxalase 1 dysfunction and vitamin B6 deficiency in a schizophrenia model system causes mitochondrial dysfunction in the prefrontal cortex. Redox Biology, 2021, 45, 102057.	3.9	12
205	Altered agonist sensitivity and desensitization of neuronal mGluR1 responses in knock-in mice by a single amino acid substitution at the PKC phosphorylation site. European Journal of Neuroscience, 2004, 20, 947-955.	1.2	11
206	Monoacylglycerol lipase blockade impairs fine motor coordination and triggers cerebellar neuroinflammation through cyclooxygenase-2. Brain, Behavior, and Immunity, 2019, 81, 399-409.	2.0	11
207	An Autism-Associated Neuroligin-3 Mutation Affects Developmental Synapse Elimination in the Cerebellum. Frontiers in Neural Circuits, 2021, 15, 676891.	1.4	11
208	SCN5A(K817E), a novel Brugada syndrome–associated mutation that alters the activation gating of NaV1.5 channel. Heart Rhythm, 2016, 13, 1113-1120.	0.3	10
209	mGluR1 in cerebellar Purkinje cells is essential for the formation but not expression of associative eyeblink memory. Scientific Reports, 2019, 9, 7353.	1.6	10
210	A Flp-dependent G-CaMP9a transgenic mouse for neuronal imaging inÂvivo. Cell Reports Methods, 2022, 2, 100168.	1.4	9
211	Retrograde Signaling for Climbing Fiber Synapse Elimination. Cerebellum, 2015, 14, 4-7.	1.4	8
212	Conditional Knockout of Cav2.1 Disrupts the Accuracy of Spatial Recognition of CA1 Place Cells and Spatial/Contextual Recognition Behavior. Frontiers in Behavioral Neuroscience, 2016, 10, 214.	1.0	8
213	Calcium imaging of adult-born neurons in freely moving mice. STAR Protocols, 2021, 2, 100238.	0.5	8
214	Alternative splicing in the C-terminal tail of Cav2.1 is essential for preventing a neurological disease in mice. Human Molecular Genetics, 2017, 26, 3094-3104.	1.4	7
215	Tonic GABAergic Inhibition Is Essential for Nerve Injury-Induced Afferent Remodeling in the Somatosensory Thalamus and Ectopic Sensations. Cell Reports, 2020, 31, 107797.	2.9	7
216	G Protein-Coupled Glutamate and GABA Receptors Form Complexes and Mutually Modulate Their Signals. ACS Chemical Neuroscience, 2020, 11, 567-578.	1.7	6

#	Article	IF	CITATIONS
217	Binocular interaction and signal components of optokinetic responses of climbing fiber afferents in the cerebellar flocculus and nodulus of the pigmented rabbit. Neuroscience Research, 1991, 12, 151-159.	1.0	5
218	Endocannabinoid Signaling from 2-Arachidonoylglycerol to CB1 Cannabinoid Receptor Facilitates Reward-based Learning of Motor Sequence. Neuroscience, 2019, 421, 1-16.	1.1	5
219	Retrograde Modulation of Synaptic Transmission Mediated by Endogenous Cannabinoids. Current Neuropharmacology, 2004, 2, 49-57.	1.4	5
220	mGluR5 Is Substitutable for mGluR1 in Cerebellar Purkinje Cells for Motor Coordination, Developmental Synapse Elimination, and Motor Learning. Cells, 2022, 11, 2004.	1.8	5
221	Phospholipase C \hat{I}^23 is Required for Climbing Fiber Synapse Elimination in Aldolase C-positive Compartments of the Developing Mouse Cerebellum. Neuroscience, 2021, 462, 36-43.	1.1	4
222	A bridge between cerebellar long-term depression and discrete motor learning: Studies on gene knockout mice. Behavioral and Brain Sciences, 1996, 19, 488-490.	0.4	3
223	Implicit Memory in Monkeys: Development of a Delay Eyeblink Conditioning System with Parallel Electromyographic and High-Speed Video Measurements. PLoS ONE, 2015, 10, e0129828.	1.1	3
224	Ectopic positioning of Bergmann glia and impaired cerebellar wiring in Mlc1â€overâ€expressing mice. Journal of Neurochemistry, 2018, 147, 344-360.	2.1	2
225	Traceable stimulus-dependent rapid molecular changes in dendritic spines in the brain. Scientific Reports, 2020, 10, 15266.	1.6	2
226	A test potential booster for fast-scan cyclic voltammetry with an electrophysiological amplifier. Analytical Biochemistry, 2020, 610, 113934.	1.1	2
227	Masao Itoâ€"A Visionary Neuroscientist with a Passion for the Cerebellum. Neuroscience, 2021, 462, 1-3.	1.1	2
228	Carbon powder-filled microelectrode: An easy-to-fabricate probe for cellular electrochemistry. Analytical Biochemistry, 2021, 629, 114316.	1.1	2
229	Cerebellar circuits. , 2020, , 79-102.		2
230	Receptive field organization of visual climbing fiber afferents to the cerebellar flocculus and nodulus. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1989, 9, 98.	0.0	1
231	New players for cerebellar long-term depression. Behavioral and Brain Sciences, 1996, 19, 462.	0.4	1
232	Neural circuits: Japan. Frontiers in Neural Circuits, 2014, 8, 135.	1.4	1
233	The Susceptibilities of Human Ether-Ã-Go-Go-Related Gene Channel with the G487R Mutation to Arrhythmogenic Factors. Biological and Pharmaceutical Bulletin, 2015, 38, 781-784.	0.6	1
234	Combining electrophysiology and optogenetics for functional screening of pyramidal neurons in the mouse prefrontal cortex. STAR Protocols, 2021, 2, 100469.	0.5	1

#	Article	IF	CITATIONS
235	In vivo genome editing in single mammalian brain neurons through CRISPR-Cas9 and cytosine base editors. Computational and Structural Biotechnology Journal, 2021, 19, 2477-2485.	1.9	1
236	Synaptogenesis and Synapse Elimination. , 2013, , 281-299.		1
237	Synaptogenesis and Synapse Elimination. , 2022, , 309-332.		1
238	The long-term depression of parallel Fiber-Purkinje cell transmission induced by conjunctive local glutamate application with climbing fiber stimulation in the cerebellar cortex of the rabbit. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1985, 1, \$126.	0.0	0
239	Quisqualate receptors mediate parallel fibre-Purkinje cell transmission in the cerebellar cortex. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1987, 5, S113.	0.0	o
240	A new multiple-drug applicator with minimal drug cross-talk, leakage, and consumption. Neuroscience Research, 2010, 66, 412-414.	1.0	0
241	Association of low back pain and fat content of paraspinal muscle using MR spectroscopy. Pain Research, 2015, 30, 230-237.	0.1	O
242	Genetic inactivation and prolonged pharmacologic inhibition of monoacylglycerol lipase have opposite effects on anesthetic sensitivity to propofol. European Journal of Pharmacology, 2015, 765, 268-273.	1.7	0
243	Synaptogenesis and Synapse Elimination in Developing Cerebellum. , 2016, , 161-165.		0
244	Synaptogenesis and Synapse Elimination. , 2019, , 1-24.		0