Yasuhiro Ohki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/274205/publications.pdf

Version: 2024-02-01

96 papers

4,256 citations

39 h-index 61 g-index

110 all docs

110 docs citations

110 times ranked

3040 citing authors

#	Article	IF	Citations
1	Cooperative Catalytic Activation of Siâ 'H Bonds by a Polar Ruâ 'S Bond: Regioselective Low-Temperature Câ 'H Silylation of Indoles under Neutral Conditions by a Friedelâ 'Crafts Mechanism. Journal of the American Chemical Society, 2011, 133, 3312-3315.	13.7	226
2	Câ^'H Bond Activation of Heteroarenes Mediated by a Half-Sandwich Iron Complex of N-Heterocyclic Carbene. Journal of the American Chemical Society, 2008, 130, 17174-17186.	13.7	172
3	Catalytic Generation of Borenium Ions by Cooperative B–H Bond Activation: The Elusive Direct Electrophilic Borylation of Nitrogen Heterocycles with Pinacolborane. Journal of the American Chemical Society, 2013, 135, 10978-10981.	13.7	168
4	Dithiolato-Bridged Dinuclear Ironâ^'Nickel Complexes [Fe(CO)2(CN)2(μ-SCH2CH2CH2S)Ni(S2CNR2)]-Modeling the Active Site of [NiFe] Hydrogenase. Journal of the American Chemical Society, 2005, 127, 8950-8951.	13.7	158
5	CH Bond Activation/Borylation of Furans and Thiophenes Catalyzed by a Halfâ€Sandwich Iron Nâ€Heterocyclic Carbene Complex. Chemistry - an Asian Journal, 2010, 5, 1657-1666.	3.3	151
6	Metal–Sulfur Compounds in N ₂ Reduction and Nitrogenase-Related Chemistry. Chemical Reviews, 2020, 120, 5194-5251.	47.7	117
7	Synthesis of New [8Fe-7S] Clusters:  A Topological Link between the Core Structures of P-Cluster, FeMo-co, and FeFe-co of Nitrogenases. Journal of the American Chemical Society, 2007, 129, 10457-10465.	13.7	114
8	Exploring the Limits of Frustrated Lewis Pair Chemistry with Alkynes: Detection of a System that Favors 1,1â€Carboboration over Cooperative 1,2â€P/Bâ€Addition. Chemistry - an Asian Journal, 2010, 5, 2199-2208.	3.3	106
9	Synthesis of the P-Cluster Inorganic Core of Nitrogenases. Journal of the American Chemical Society, 2003, 125, 4052-4053.	13.7	101
10	Synthesis of Bis(N-heterocyclic carbene) Complexes of Iron(II) and Their Application in Hydrosilylation and Transfer Hydrogenation. Organometallics, 2012, 31, 4474-4479.	2.3	99
11	Dinitrogen Activation by Groupâ€4 Metal Complexes. Angewandte Chemie - International Edition, 2007, 46, 3180-3183.	13.8	92
12	[Fe ₄] and [Fe ₆] Hydride Clusters Supported by Phosphines: Synthesis, Characterization, and Application in N ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 5596-5606.	13.7	92
13	Mono{hydrotris(mercaptoimidazolyl)borato} Complexes of Manganese(II), Iron(II), Cobalt(II), and Nickel(II) Halides. Inorganic Chemistry, 2006, 45, 9914-9925.	4.0	87
14	Thiolateâ€Bridged Iron–Nickel Models for the Active Site of [NiFe] Hydrogenase. European Journal of Inorganic Chemistry, 2011, 2011, 973-985.	2.0	77
15	Mechanism of the cooperative Si–H bond activation at Ru–S bonds. Chemical Science, 2015, 6, 4324-4334.	7.4	76
16	Reversible Heterolysis of H $<$ sub $>$ 2 $<$ /sub $>$ Mediated by an Mâ $^{\circ}$ S(Thiolate) Bond (M = Ir, Rh): A Mechanistic Implication for [NiFe] Hydrogenase. Journal of the American Chemical Society, 2008, 130, 11610-11611.	13.7	75
17	Reactions at the Ru–S Bonds of Coordinatively Unsaturated Ruthenium Complexes with Tethered 2,6â€Dimesitylphenyl Thiolate. Chemistry - an Asian Journal, 2008, 3, 1625-1635.	3.3	70
18	Heterolytic Cleavage of Dihydrogen by Frustrated Lewis Pairs Derived from α-(Dimesitylphosphino)ferrocenes and B(C ₆ F ₅) ₃ . Organometallics, 2008, 27, 5279-5284.	2.3	69

#	Article	IF	CITATIONS
19	Thiolate-bridged dinuclear iron(tris-carbonyl)–nickel complexes relevant to the active site of [NiFe] hydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7652-7657.	7.1	69
20	N2 activation on a molybdenum–titanium–sulfur cluster. Nature Communications, 2018, 9, 3200.	12.8	67
21	Base-Free Dehydrogenative Coupling of Enolizable Carbonyl Compounds with Silanes. Organic Letters, 2012, 14, 2842-2845.	4.6	64
22	Synthesis, Structures, and Electronic Properties of [8Fe-7S] Cluster Complexes Modeling the Nitrogenase P-Cluster. Journal of the American Chemical Society, 2009, 131, 13168-13178.	13.7	62
23	A Nitrogenase Cluster Model [Fe ₈ S ₆ O] with an Oxygen Unsymmetrically Bridging Two Proto-Fe ₄ S ₃ Cubes: Relevancy to the Substrate Binding Mode of the FeMo Cofactor. Inorganic Chemistry, 2012, 51, 11217-11219.	4.0	58
24	Sulfido-Bridged Dinuclear Molybdenumâ^'Copper Complexes Related to the Active Site of CO Dehydrogenase:  [(dithiolate)Mo(O)S2Cu(SAr)]2- (dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, 1,2-S2C2H4 Inorganic Chemistry, 2005, 44, 6034-6043.	ł)4.0	57
25	Nitrogen reduction by the Fe sites of synthetic [Mo3S4Fe] cubes. Nature, 2022, 607, 86-90.	27.8	55
26	Tracing the â€~ninth sulfur' of the nitrogenase cofactor via a semi-synthetic approach. Nature Chemistry, 2018, 10, 568-572.	13.6	54
27	Heterolytic Cleavage of Dihydrogen Promoted by Sulfido-Bridged Tungstenâ^Ruthenium Dinuclear Complexes. Journal of the American Chemical Society, 2003, 125, 7978-7988.	13.7	53
28	An Iron(II) Complex of a Diamine-Bridged Bis-N-Heterocyclic Carbene. Organometallics, 2012, 31, 8047-8050.	2.3	52
29	A model for the CO-inhibited form of [NiFe] hydrogenase: synthesis of (CO)3Fe(Â-StBu)3Ni and reversible CO addition at the Ni site. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3994-3997.	7.1	51
30	Ambient conversion of CO2 to hydrocarbons by biogenic and synthetic [Fe4S4] clusters. Nature Catalysis, 2018, 1, 444-451.	34.4	51
31	Synthesis of [2Fe–2S] and [4Fe–4S] Clusters Having Terminal Amide Ligands from an Iron(II) Amide Complex. Chemistry Letters, 2005, 34, 172-173.	1.3	48
32	Synthesis and characterization of heteroleptic iron(II) thiolate complexes with weak iron–arene interactions. Journal of Organometallic Chemistry, 2007, 692, 4792-4799.	1.8	48
33	A Dithiolate-Bridged (CN) < sub > 2 < /sub > (CO) Feâ^'Ni Complex Reproducing the IR Bands of [NiFe] Hydrogenase. Inorganic Chemistry, 2009, 48, 2358-2360.	4.0	48
34	Reductive Nâ^'N Bond Cleavage of Diphenylhydrazine and Azobenzene Induced by Coordinatively Unsaturated Cp*Fe{N(SiMe3)2}. Organometallics, 2006, 25, 3111-3113.	2.3	47
35	Eliminationâ [^] Addition Mechanism for Nucleophilic Substitution Reaction of Cyclohexenyl Iodonium Salts and Regioselectivity of Nucleophilic Addition to the Cyclohexyne Intermediate. Journal of the American Chemical Society, 2004, 126, 7548-7558.	13.7	46
36	Structure and Reactivity of an Asymmetric Synthetic Mimic of Nitrogenase Cofactor. Angewandte Chemie - International Edition, 2016, 55, 15633-15636.	13.8	44

#	Article	IF	CITATIONS
37	Novel Mode of Câ^'C Bond Cleavage of Norbornadiene on a Dinuclear Ruthenium Complex. Angewandte Chemie - International Edition, 2000, 39, 3463-3465.	13.8	43
38	Synthetic analogues of [Fe ₄ S ₄ (Cys) ₃ (His)] in hydrogenases and [Fe ₄ S ₄ (Cys) ₄] in HiPIP derived from all-ferric [Fe ₄ S ₄ {N(SiMe ₃) ₂ } <su. 108,="" 12635-12640.<="" 2011,="" academy="" america,="" national="" of="" proceedings="" sciences="" states="" td="" the="" united=""><td>7.1</td><td>41</td></su.>	7.1	41
39	[{(η5-C5Me5)Fe}2(Î-¼-H)4]: A Novel Dinuclear Iron Tetrahydrido Complex. Angewandte Chemie - International Edition, 2000, 39, 3120-3122.	13.8	40
40	Synthesis of Coordinatively Unsaturated Mesityliron Thiolate Complexes and Their Reactions with Elemental Sulfur. Inorganic Chemistry, 2010, 49, 6102-6109.	4.0	39
41	Impact of ligands and media on the structure and properties of biological and biomimetic iron-sulfur clusters. Coordination Chemistry Reviews, 2017, 338, 207-225.	18.8	36
42	$\{(\hat{l}\cdot 5-C5Me5)Fe\}2(\hat{l}\frac{1}{4}-H)2(\hat{l}\frac{1}{4}-\hat{l}\cdot 2:\hat{l}\cdot 2-H2SitBu2), a Versatile Precursor for Bimetallic Active Species. Organometallics, 2001, 20, 2654-2656.$	2.3	35
43	Synthesis and dehydrogenation of M(AlH4)2 (M=Mg, Ca). Journal of Alloys and Compounds, 2007, 446-447, 237-241.	5.5	35
44	Combining a Nitrogenase Scaffold and a Synthetic Compound into an Artificial Enzyme. Angewandte Chemie - International Edition, 2015, 54, 14022-14025.	13.8	35
45	Câ^'H Bond Activation of Decamethylcobaltocene Mediated by a Nitrogenase Fe ₈ S ₇ P-Cluster Model. Inorganic Chemistry, 2009, 48, 4271-4273.	4.0	34
46	New Synthetic Routes to Metalâ€Sulfur Clusters Relevant to the Nitrogenase Metalloâ€Clusters. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1340-1349.	1.2	34
47	A Half-Sandwich Ruthenium(II) Complex Containing a Coordinatively Unsaturated 2,6-Dimesitylphenyl Thiolate Ligand. Angewandte Chemie - International Edition, 2004, 43, 2290-2293.	13.8	33
48	Reduction of C ₁ Substrates to Hydrocarbons by the Homometallic Precursor and Synthetic Mimic of the Nitrogenase Cofactor. Journal of the American Chemical Society, 2017, 139, 603-606.	13.7	33
49	Dinuclear Iron(0) Complexes of N-Heterocyclic Carbenes. Organometallics, 2014, 33, 921-929.	2.3	32
50	Formation of a Nitrogenase Pâ€cluster [Fe ₈ S ₇] Core via Reductive Fusion of Two Allâ€Ferric [Fe ₄ S ₄] Clusters. Chemistry - an Asian Journal, 2012, 7, 2222-2224.	3.3	31
51	Migration of a Phosphane Ligand between the Two Metal Centers in Diruthenium Hydrido Complexes We gratefully acknowledge Professor Masato Oshima (Tokyo Institute of Polytechnics) for performing the theoretical calculation and thank Kanto Chemical Co., Inc., for a generous gift of pentamethylcyclopentadiene Angewandte Chemie - International Edition, 2002, 41, 2994.	13.8	30
52	Synthesis and Characterization of Bioinspired [Mo 2 Fe 2]â€"Hydride Cluster Complexes and Their Application in the Catalytic Silylation of N 2. Chemistry - A European Journal, 2017, 23, 13240-13248.	3.3	30
53	Catalytic hydrogenation of CO and CN bonds via heterolysis of H2 mediated by metal–sulfur bonds of rhodium and iridium thiolate complexes. Journal of Organometallic Chemistry, 2009, 694, 2820-2824.	1.8	29
54	Co ₆ H ₈ (P ^{<i>i>i</i>} Pr ₃) ₆ : A Cobalt Octahedron with Faceâ€Capping Hydrides. Angewandte Chemie - International Edition, 2016, 55, 15821-15825.	13.8	29

#	Article	IF	CITATIONS
55	Theory of chemical bonds in metalloenzymes V: Hybrid-DFT studies of the inorganic [8Fe–7S] core. International Journal of Quantum Chemistry, 2006, 106, 3288-3302.	2.0	28
56	Coupling of an Nâ€Heterocyclic Carbene on Iron with Alkynes to Form η ⁵ â€Cyclopentadienylâ€Diimine Ligands. Angewandte Chemie - International Edition, 2014, 53, 2727-2729.	13.8	28
57	A Convenient Route to Synthetic Analogues of the Oxidized Form of High-Potential Iron–Sulfur Proteins. Inorganic Chemistry, 2014, 53, 4000-4009.	4.0	27
58	Molybdenum Carbonyl Complexes with Citrate and Its Relevant Carboxylates. Organometallics, 2005, 24, 1344-1347.	2.3	25
59	N-Heterocyclic carbenes as supporting ligands in transition metal complexes of N ₂ . Dalton Transactions, 2016, 45, 874-880.	3.3	25
60	Naphthalene and Anthracene Complexes Sandwiched by Two {(Cp*)Fe ^I } Fragments: Strong Electronic Coupling between the Fe ^I Centers. Chemistry - an Asian Journal, 2012, 7, 1231-1242.	3.3	24
61	Synthesis and Protonation of N-Heterocyclic-Carbene-Supported Dinitrogen Complexes of Molybdenum(0). Organometallics, 2015, 34, 3414-3420.	2.3	24
62	An Iron(II) Carbonyl Thiolato Complex Bearing 2â€Methoxyâ€Pyridine: A Structural Model of the Active Site of [Fe] Hydrogenase. Chemistry - an Asian Journal, 2010, 5, 1962-1964.	3.3	23
63	Synthesis of Coordinatively Unsaturated Halfâ€Sandwich Iron–Silyl Complexes with an Nâ€Heterocyclic Carbene Ligand and Their Reactions with H ₂ . European Journal of Inorganic Chemistry, 2013, 2013, 3966-3971.	2.0	23
64	Pentanuclear Polyhydride Cluster of Ruthenium with Trigonal-Bipyramidal Geometry. Synthesis and Fluxional Behavior. Organometallics, 2003, 22, 59-64.	2.3	22
65	Dithiolateâ€Bridged Feâ€Niâ€Fe Trinuclear Complexes Consisting of Fe(CO) _{3â²'<i>n</i>} (CN) _{<i>n</i>} (<i>n</i> =0, 1) Components Relevant to the Active Site of [NiFe] Hydrogenase. Chemistry - an Asian Journal, 2009, 4, 961-968.	3.3	21
66	Synthesis and Reactions of Coordinatively Unsaturated Half-Sandwich Rhodium and Iridium Complexes Having a 2,6-Dimesitylbenzenethiolate Ligand. Organometallics, 2010, 29, 1761-1770.	2.3	20
67	Oxido-Bridged Di-, Tri-, and Tetra-Nuclear Iron Complexes Bearing Bis(trimethylsilyl)amide and Thiolate Ligands. Inorganic Chemistry, 2012, 51, 2645-2651.	4.0	20
68	Interconversion between [Fe ₄ S ₄] and [Fe ₂ S ₂] Clusters Bearing Amide Ligands. Inorganic Chemistry, 2016, 55, 4512-4518.	4.0	19
69	Rational Synthesis of Tetranuclear Ruthenium Polyhydride Clusters and Their Mixed-Ligand Analogues. Angewandte Chemie - International Edition, 2002, 41, 4085-4087.	13.8	18
70	Cubaneâ€Type [Mo ₃ S ₄ M] Clusters with Firstâ€Row Groupsâ€4–10 Transitionâ€Me Halides Supported by C ₅ Me ₅ Ligands on Molybdenum. Chemistry - A European Journal, 2018, 24, 17138-17147.	etal 3.3	18
71	Synthesis of [Mo ₃ S ₄] Clusters from Half-Sandwich Molybdenum(V) Chlorides and Their Application as Platforms for [Mo ₃ S ₄ Fe] Cubes. Inorganic Chemistry, 2019, 58, 5230-5240.	4.0	17
72	A facile method for synthesis of (R)-(\hat{a} ')- and (S)-(+)-homocitric acid lactones and related \hat{l} ±-hydroxy dicarboxylic acids from d- or l-malic acid. Tetrahedron Letters, 2005, 46, 3815-3818.	1.4	16

#	Article	IF	CITATIONS
73	Co ₆ H ₈ (P ^{<i>i</i>} Pr ₃) ₆ : A Cobalt Octahedron with Faceâ€Capping Hydrides. Angewandte Chemie, 2016, 128, 16053-16057.	2.0	16
74	N-Heterocyclic Carbene Complexes of Three- and Four-Coordinate Fe(I). Organometallics, 2016, 35, 1368-1375.	2.3	14
75	Structure and Reactivity of an Asymmetric Synthetic Mimic of Nitrogenase Cofactor. Angewandte Chemie, 2016, 128, 15862-15865.	2.0	13
76	Synthesis of Dinuclear Moâ^'Fe Hydride Complexes and Catalytic Silylation of N 2. Chemistry - A European Journal, 2020, 26, 9537-9546.	3.3	13
77	Non-Centrosymmetric Coordination Polymer with a Highly Hindered Octahedral Copper Center Bridged by Mandelate. Inorganic Chemistry, 2012, 51, 4689-4693.	4.0	12
78	Tracing the incorporation of the "ninth sulfur―into the nitrogenase cofactor precursor with selenite and tellurite. Nature Chemistry, 2021, 13, 1228-1234.	13.6	12
79	3-(Dimethylboryl)pyridine:  Synthesis, Structure, and Remarkable Steric Effects in Scrambling Reactions. Journal of Organic Chemistry, 2008, 73, 81-87.	3.2	11
80	Synthesis of V/Fe/S Clusters Using Vanadium(III) Thiolate Complexes Bearing a Phenoxide-Based Tridentate Ligand. Inorganic Chemistry, 2014, 53, 5438-5446.	4.0	11
81	Synthetic Analogues of the Active Sites of Nitrogenase and [NiFe] Hydrogenase. Bulletin of the Chemical Society of Japan, 2014, 87, 1-19.	3.2	10
82	Synthesis of dimethylmanganese(II) complexes bearing N-heterocyclic carbenes and nucleophilic substitution reaction of tetraalkoxysilanes by diorganomanganese(II) complexes. Journal of Organometallic Chemistry, 2016, 820, 14-19.	1.8	7
83	A dinuclear Mo2H8 complex supported by bulky C5H2tBu3 ligands. Chemical Communications, 2020, 56, 8035-8038.	4.1	7
84	Trithio-Chloro Molybdate [MoClS3]â^: A Versatile Precursor for Molybdenum Trisulfido Complexes. Inorganic Chemistry, 2008, 47, 3763-3771.	4.0	6
85	3â€[4′â€(Diethylboryl)phenyl]pyridine: Exclusive Crystallization of the Cyclic Tetramer. Chemistry - an Asian Journal, 2019, 14, 568-573.	3.3	6
86	Synthesis of Monophosphaferrocenes Revisited. ChemistrySelect, 2022, 7, .	1.5	6
87	Self-Assembly of 4-(Diethylboryl)pyridine: Crystal Structures of the Cyclic Pentamer and Hexamer and Their Solvent-Dependent Selective Crystallization. Journal of Organic Chemistry, 2016, 81, 2399-2404.	3.2	5
88	Synthesis, Characterization, and Application of Segphos Derivative Having Diferrocenylphosphino-Donor Moieties. Organometallics, 2020, 39, 788-792.	2.3	4
89	Cationic Ru–Se Complexes for Cooperative Si–H Bond Activation. Organometallics, 2020, 39, 4747-4753.	2.3	3
90	Evidence for a Rapid Degenerate Heteroâ€Copeâ€Type Rearrangement in [Cp*W(S) ₂ Sâ€CH ₂ â€CHCH ₂]. Chemistry - an Asian Journal, 2009, 4, 1830-1833.	3.3	1

#	Article	IF	CITATIONS
91	Recent Advances in the Chemical Synthesis of Nitrogenase Model Clusters. Structure and Bonding, 2018, , 33-61.	1.0	1
92	Chemical Synthesis of an Asymmetric Mimic of the Nitrogenase Active Site. Methods in Molecular Biology, 2019, 1876, 229-244.	0.9	1
93	Four-Electron Reduction of Dioxygen on a Metal Surface: Models of Dissociative and Associative Mechanisms in a Homogeneous System. Inorganic Chemistry, 2021, 60, 1550-1560.	4.0	1
94	Organometallic Chemistry in [NiFe] Hydrogenases: Synthesis of the Structural and Functional Models. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 540-553.	0.1	1
95	Transition metal catalyzed cross-coupling and nitrogen reduction reactions: Lessons from computational studies. Advances in Organometallic Chemistry, 2022, , 35-78.	1.0	1
96	Recent Progress in Research on the Structures and Functions of Nitrogenase Active Sites. Bulletin of Japan Society of Coordination Chemistry, 2015, 66, 26-30.	0.2	0