Lynnette Fernandez-Cuesta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2741804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Orthopedia Homeobox expression in pulmonary carcinoids is associated with changes in <scp>DNA</scp> methylation. International Journal of Cancer, 2022, 150, 1987-1997.	5.1	4
2	Detection of acquired TERT amplification in addition to predisposing p53 and Rb pathways alterations in EGFR-mutant lung adenocarcinomas transformed into small-cell lung cancers. Lung Cancer, 2022, 167, 98-106.	2.0	6
3	Challenges in lung and thoracic pathology: molecular advances in the classification of pleural mesotheliomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 73-80.	2.8	11
4	EURACAN/IASLC Proposals for Updating the Histologic Classification of Pleural Mesothelioma: Towards a More Multidisciplinary Approach. Journal of Thoracic Oncology, 2020, 15, 29-49.	1.1	106
5	New molecular classification of large cell neuroendocrine carcinoma and small cell lung carcinoma with potential therapeutic impacts. Translational Lung Cancer Research, 2020, 9, 2233-2244.	2.8	58
6	A molecular map of lung neuroendocrine neoplasms. GigaScience, 2020, 9, .	6.4	17
7	Needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data. NAR Genomics and Bioinformatics, 2020, 2, Iqaa021.	3.2	5
8	Comprehensive Molecular and Pathologic Evaluation of Transitional Mesothelioma Assisted by Deep Learning Approach: A Multi-Institutional Study of the International Mesothelioma Panel from the MESOPATH Reference Center. Journal of Thoracic Oncology, 2020, 15, 1037-1053.	1.1	40
9	Integrative and comparative genomic analyses identify clinicallyÂrelevant pulmonary carcinoidÂgroups and unveil the supra-carcinoids. Nature Communications, 2019, 10, 3407.	12.8	132
10	Molecular studies of lung neuroendocrine neoplasms uncover new concepts and entities. Translational Lung Cancer Research, 2019, 8, S430-S434.	2.8	25
11	Redefining malignant pleural mesothelioma types as a continuum uncovers immune-vascular interactions. EBioMedicine, 2019, 48, 191-202.	6.1	55
12	New Insights into the Molecular Characteristics of Pulmonary Carcinoids and Large Cell Neuroendocrine Carcinomas, and the Impact on Their Clinical Management. Journal of Thoracic Oncology, 2018, 13, 752-766.	1.1	102
13	Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nature Communications, 2018, 9, 1048.	12.8	254
14	Molecular Subtypes of Pulmonary Large-cell Neuroendocrine Carcinoma Predict Chemotherapy Treatment Outcome. Clinical Cancer Research, 2018, 24, 33-42.	7.0	164
15	Small-Cell Cancer of the Lung: Pathology and Genetics. , 2018, , 403-403.		0
16	Highlights of the 14th international mesothelioma interest group meeting: Pathologic separation of benign from malignant mesothelial proliferations and histologic/molecular analysis of malignant mesothelioma subtypes. Lung Cancer, 2018, 124, 95-101.	2.0	29
17	A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Modern Pathology, 2018, 31, 1770-1786.	5.5	739
18	BAP1 Is Altered by Copy Number Loss, Mutation, and/or Loss of Protein Expression in More Than 70% ofÂMalignant Peritoneal Mesotheliomas. Journal of Thoracic Oncology, 2017, 12, 724-733.	1.1	67

#	Article	IF	CITATIONS
19	Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas. Journal of Investigative Dermatology, 2017, 137, 197-206.	0.7	78
20	Genomic architecture of lung cancers. Current Opinion in Oncology, 2016, 28, 52-57.	2.4	9
21	Identification of Circulating Tumor DNA for the Early Detection of Small-cell Lung Cancer. EBioMedicine, 2016, 10, 117-123.	6.1	153
22	Heterogeneous Mechanisms of Primary and Acquired Resistance to Third-Generation EGFR Inhibitors. Clinical Cancer Research, 2016, 22, 4837-4847.	7.0	223
23	Abstract 122: Comparative analysis of small cell lung cancer and other pulmonary neuroendocrine tumors. , 2016, , .		6
24	Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. Oncotarget, 2016, 7, 5273-5288.	1.8	60
25	Abstract 3156: NGS-based screening for TP53 mutations in circulating cell-free DNA: A first step towards early detection of lung cancers. , 2016, , .		0
26	Molecular Pathways: Targeting <i>NRG1</i> Fusions in Lung Cancer. Clinical Cancer Research, 2015, 21, 1989-1994.	7.0	61
27	Comprehensive genomic profiles of small cell lung cancer. Nature, 2015, 524, 47-53.	27.8	1,634
28	Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data. Genome Biology, 2015, 16, 7.	8.8	44
29	Abstract 752: Elucidating the mechanisms of acquired resistance in lung adenocarcinomas. , 2015, , .		Ο
30	Cell-Autonomous and Non–Cell-Autonomous Mechanisms of Transformation by Amplified <i>FGFR1</i> in Lung Cancer. Cancer Discovery, 2014, 4, 246-257.	9.4	93
31	Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nature Communications, 2014, 5, 3518.	12.8	239
32	<i>CD74–NRG1</i> Fusions in Lung Adenocarcinoma. Cancer Discovery, 2014, 4, 415-422.	9.4	238
33	Abstract 1531: Cross-entity mutation analysis of lung neuroendocrine tumors sheds light into their molecular origin and identifies new therapeutic targets. , 2014, , .		13
34	Abstract 1542: Comprehensive genome and transcriptome analyses on small cell lung cancer. , 2014, , .		0
35	Abstract 441: Functional characterization of recurrent CD74â€NRG1 fusions in lung adenocarcinoma. , 2014, , .		0
36	Abstract 956: Elucidating the mechanisms of acquired resistance in lung adenocarcinomas. , 2014, , .		0

#	Article	IF	CITATIONS
37	Prognostic and predictive value of TP53mutations in node-positive breast cancer patients treated with anthracycline- or anthracycline/taxane-based adjuvant therapy: results from the BIG 02-98 phase III trial. Breast Cancer Research, 2012, 14, R70.	5.0	52
38	Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics, 2012, 44, 1104-1110.	21.4	1,186
39	Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor <i>BRAF</i> gene mutations but lack mutations in <i>KRAS, NRAS,</i> or <i>MEK1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2127-33.	7.1	410
40	p53-Dependent repression of focal adhesion kinase in response to estradiol in breast cancer cell-lines. Cancer Letters, 2011, 300, 215-224.	7.2	25
41	Estrogen levels act as a rheostat on p53 levels and modulate p53-dependent responses in breast cancer cell lines. Breast Cancer Research and Treatment, 2011, 125, 35-42.	2.5	27
42	p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines. International Journal of Cancer, 2011, 128, 1813-1821.	5.1	29
43	p53 regulates the transcription of its Δ133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene, 2010, 29, 2691-2700.	5.9	60