Reinout Heijungs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2741764/publications.pdf Version: 2024-02-01

REINOUT HEILINGS

#	Article	IF	CITATIONS
1	Recent developments in Life Cycle Assessment. Journal of Environmental Management, 2009, 91, 1-21.	3.8	2,163
2	Life Cycle Assessment: Past, Present, and Future. Environmental Science & Technology, 2011, 45, 90-96.	4.6	1,090
3	Identifying best existing practice for characterization modeling in life cycle impact assessment. International Journal of Life Cycle Assessment, 2013, 18, 683-697.	2.2	515
4	The Computational Structure of Life Cycle Assessment. Eco-efficiency in Industry and Science, 2002, , .	0.1	356
5	Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polymer Degradation and Stability, 2010, 95, 422-428.	2.7	266
6	Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: Overview of a footprint family. Ecological Indicators, 2014, 36, 508-518.	2.6	259
7	Lights and shadows in consequential LCA. International Journal of Life Cycle Assessment, 2012, 17, 904-918.	2.2	248
8	The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. International Journal of Life Cycle Assessment, 2004, 9, 394.	2.2	226
9	Towards a global multi-regional environmentally extended input–output database. Ecological Economics, 2009, 68, 1928-1937.	2.9	223
10	Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review. Renewable and Sustainable Energy Reviews, 2017, 79, 414-439.	8.2	205
11	Allocation and â€~what-if' scenarios in life cycle assessment of waste management systems. Waste Management, 2007, 27, 997-1005.	3.7	197
12	Economic allocation: Examples and derived decision tree. International Journal of Life Cycle Assessment, 2004, 9, 23.	2.2	178
13	Trade-offs between social and environmental Sustainable Development Goals. Environmental Science and Policy, 2018, 90, 65-72.	2.4	167
14	Quantitative life cycle assessment of products. Journal of Cleaner Production, 1993, 1, 81-91.	4.6	158
15	Estimating global copper demand until 2100 with regression and stock dynamics. Resources, Conservation and Recycling, 2018, 132, 28-36.	5.3	157
16	Identification of key issues for further investigation in improving the reliability of life-cycle assessments. Journal of Cleaner Production, 1996, 4, 159-166.	4.6	154
17	Life-cycle assessment for energy analysis and management. Applied Energy, 2007, 84, 817-827.	5.1	152
18	Material flows and economic models: an analytical comparison of SFA, LCA and partial equilibrium models. Ecological Economics, 2000, 32, 195-216.	2.9	147

#	Article	IF	CITATIONS
19	A generic method for the identification of options for cleaner products. Ecological Economics, 1994, 10, 69-81.	2.9	141
20	Three Strategies to Overcome the Limitations of Life-Cycle Assessment. Journal of Industrial Ecology, 2004, 8, 19-32.	2.8	140
21	A proposal for the definition of resource equivalency factors for use in product lifeâ€cycle assessment. Environmental Toxicology and Chemistry, 1995, 14, 917-925.	2.2	134
22	LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice. Renewable and Sustainable Energy Reviews, 2012, 16, 5295-5308.	8.2	133
23	Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint–boundary environmental sustainability assessment framework. Ecological Economics, 2015, 114, 218-226.	2.9	132
24	Environmental Impacts of Consumption in the European Union:High-Resolution Input-Output Tables with Detailed Environmental Extensions. Journal of Industrial Ecology, 2006, 10, 129-146.	2.8	125
25	Toward a computational structure for life cycle sustainability analysis: unifying LCA and LCC. International Journal of Life Cycle Assessment, 2013, 18, 1722-1733.	2.2	125
26	Numerical approaches towards life cycle interpretation five examples. International Journal of Life Cycle Assessment, 2001, 6, 141.	2.2	120
27	A proposal for the classification of toxic substances within the framework of life cycle assessment of products. Chemosphere, 1993, 26, 1925-1944.	4.2	114
28	Error propagation methods for LCA—a comparison. International Journal of Life Cycle Assessment, 2014, 19, 1445-1461.	2.2	110
29	Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: case study of a cool area of China. Journal of Cleaner Production, 2015, 94, 278-283.	4.6	106
30	Generalized Make and Use Framework for Allocation in Life Cycle Assessment. Journal of Industrial Ecology, 2010, 14, 335-353.	2.8	105
31	Methods for uncertainty propagation in life cycle assessment. Environmental Modelling and Software, 2014, 62, 316-325.	1.9	101
32	Modelling global material stocks and flows for residential and service sector buildings towards 2050. Journal of Cleaner Production, 2020, 245, 118658.	4.6	98
33	Methods for global sensitivity analysis in life cycle assessment. International Journal of Life Cycle Assessment, 2017, 22, 1125-1137.	2.2	97
34	Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts. PLoS ONE, 2015, 10, e0121221.	1.1	93
35	Quantified Uncertainties in Comparative Life Cycle Assessment: What Can Be Concluded?. Environmental Science & Technology, 2018, 52, 2152-2161.	4.6	87
36	Spatially Explicit Characterization of Acidifying and Eutrophying Air Pollution in Life-Cycle Assessment. Journal of Industrial Ecology, 2000, 4, 75-92.	2.8	86

#	Article	IF	CITATIONS
37	Differences between LCA for analysis and LCA for policy: a case study on the consequences of allocation choices in bio-energy policies. International Journal of Life Cycle Assessment, 2012, 17, 1059-1067.	2.2	86
38	Imbalance and drivers of carbon emissions embodied in trade along the Belt and Road Initiative. Applied Energy, 2020, 280, 115934.	5.1	83
39	Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment. Energy, 2016, 106, 87-102.	4.5	82
40	On the number of Monte Carlo runs in comparative probabilistic LCA. International Journal of Life Cycle Assessment, 2020, 25, 394-402.	2.2	82
41	A special view on the nature of the allocation problem. International Journal of Life Cycle Assessment, 1998, 3, 321-332.	2.2	80
42	Bias in normalization: Causes, consequences, detection and remedies. International Journal of Life Cycle Assessment, 2007, 12, 211-216.	2.2	80
43	LCâ€IMPACT: A regionalized life cycle damage assessment method. Journal of Industrial Ecology, 2020, 24, 1201-1219.	2.8	80
44	Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nature Nanotechnology, 2017, 12, 727-733.	15.6	78
45	Sensitivity coefficients for matrix-based LCA. International Journal of Life Cycle Assessment, 2010, 15, 511-520.	2.2	76
46	A greenhouse gas indicator for bioenergy: some theoretical issues with practical implications. International Journal of Life Cycle Assessment, 2009, 14, 328-339.	2.2	72
47	Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA. Journal of Cleaner Production, 2017, 150, 237-242.	4.6	72
48	On the use of different models for consequential life cycle assessment. International Journal of Life Cycle Assessment, 2018, 23, 751-758.	2.2	71
49	A protocol for horizontal averaging of unit process data—including estimates for uncertainty. International Journal of Life Cycle Assessment, 2014, 19, 429-436.	2.2	70
50	The Environmental Sustainability of Nations: Benchmarking the Carbon, Water and Land Footprints against Allocated Planetary Boundaries. Sustainability, 2015, 7, 11285-11305.	1.6	67
51	Effect of biogenic carbon inventory on the life cycle assessment of bioenergy: challenges to the neutrality assumption. Journal of Cleaner Production, 2016, 125, 78-85.	4.6	66
52	Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment. Chemosphere, 2005, 61, 1495-1504.	4.2	64
53	Assessment of Life Cycle Impacts on Ecosystem Services: Promise, Problems, and Prospects. Environmental Science & Technology, 2016, 50, 1077-1092.	4.6	61
54	Ignoring correlation in uncertainty and sensitivity analysis in life cycle assessment: what is the risk?. Environmental Impact Assessment Review, 2017, 62, 98-109.	4.4	61

#	Article	IF	CITATIONS
55	Attributional & Consequential Life Cycle Assessment: Definitions, Conceptual Characteristics and Modelling Restrictions. Sustainability, 2021, 13, 7386.	1.6	59
56	Numerical Approaches to Life Cycle Interpretation - The case of the Ecoinvent'96 database (10 pp). International Journal of Life Cycle Assessment, 2005, 10, 103-112.	2.2	58
57	Power series expansion and structural analysis for life cycle assessment. International Journal of Life Cycle Assessment, 2007, 12, 381-390.	2.2	58
58	Comparison of Asian Aquaculture Products by Use of Statistically Supported Life Cycle Assessment. Environmental Science & Technology, 2015, 49, 14176-14183.	4.6	58
59	The computational structure of life cycle assessment. International Journal of Life Cycle Assessment, 2002, 7, 314-314.	2.2	57
60	The ESPA (Enhanced Structural Path Analysis) method: a solution to an implementation challenge for dynamic life cycle assessment studies. International Journal of Life Cycle Assessment, 2014, 19, 861-871.	2.2	57
61	Ten easy lessons for good communication of LCA. International Journal of Life Cycle Assessment, 2014, 19, 473-476.	2.2	55
62	A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment. Risk Analysis, 2016, 36, 357-377.	1.5	55
63	Harmonization of methods for impact assessment. Environmental Science and Pollution Research, 1995, 2, 217-224.	2.7	53
64	Is bioethanol a sustainable energy source? An energy-, exergy-, and emergy-based thermodynamic system analysis. Renewable Energy, 2011, 36, 3479-3487.	4.3	53
65	Representing Statistical Distributions for Uncertain Parameters in LCA. Relationships between mathematical forms, their representation in EcoSpold, and their representation in CMLCA (7 pp). International Journal of Life Cycle Assessment, 2005, 10, 248-254.	2.2	52
66	An Identification Key for Selecting Methods for Sustainability Assessments. Sustainability, 2015, 7, 2490-2512.	1.6	52
67	The footprint's fingerprint: on the classification of the footprint family. Current Opinion in Environmental Sustainability, 2016, 23, 54-62.	3.1	52
68	Accounting for land-use efficiency and temporal variations between brownfield remediation alternatives in life-cycle assessment. Journal of Cleaner Production, 2015, 101, 109-117.	4.6	51
69	GLOBOX: A spatially differentiated global fate, intake and effect model for toxicity assessment in LCA. Science of the Total Environment, 2010, 408, 2817-2832.	3.9	49
70	Toward an Information Tool for Integrated Product Policy: Requirements for Data and Computation. Journal of Industrial Ecology, 2006, 10, 147-158.	2.8	48
71	Thermodynamic analysis of human–environment systems: A review focused on industrial ecology. Ecological Modelling, 2012, 228, 76-88.	1.2	47
72	Developing an LCA guide for decision support. Management of Environmental Quality, 2001, 12, 301-311.	0.4	46

#	Article	IF	CITATIONS
73	Digesting the alphabet soup of LCA. International Journal of Life Cycle Assessment, 2018, 23, 1507-1511.	2.2	46
74	Thermodynamic resource indicators in LCA: a case study on the titania produced in Panzhihua city, southwest China. International Journal of Life Cycle Assessment, 2012, 17, 951-961.	2.2	45
75	Abiotic resource depletion potentials (ADPs) for elements revisited—updating ultimate reserve estimates and introducing time series for production data. International Journal of Life Cycle Assessment, 2020, 25, 294-308.	2.2	45
76	Einstein'ssons for energy accounting in LCA. International Journal of Life Cycle Assessment, 1998, 3, 266-272.	2.2	43
77	Reformulation of matrix-based LCI: from product balance to process balance. Journal of Cleaner Production, 2006, 14, 47-51.	4.6	42
78	Towards a general framework for including noise impacts in LCA. International Journal of Life Cycle Assessment, 2012, 17, 471-487.	2.2	40
79	Substance flows through the economy and environment of a region. Environmental Science and Pollution Research, 1995, 2, 137-144.	2.7	39
80	An improved life cycle impact assessment principle for assessing the impact of land use on ecosystem services. Science of the Total Environment, 2019, 693, 133374.	3.9	39
81	Similarities, Differences and Synergisms Between HERA and LCA—An Analysis at Three Levels. Human and Ecological Risk Assessment (HERA), 2006, 12, 431-449.	1.7	38
82	Substance flows through the economy and environment of a region. Environmental Science and Pollution Research, 1995, 2, 90-96.	2.7	33
83	Full Mode and Attribution Mode in Environmental Analysis. Journal of Industrial Ecology, 2000, 4, 45-56.	2.8	33
84	Method selection for sustainability assessments: The case of recovery of resources from waste water. Journal of Environmental Management, 2017, 197, 221-230.	3.8	31
85	6th SETAC-Europe Meeting: LCA - Selected Papers uses. International Journal of Life Cycle Assessment, 1996, 1, 133-138.	2.2	30
86	Economic drama and the environmental stage. International Journal of Life Cycle Assessment, 1997, 2, 195-196.	2.2	30
87	Sensitivity analysis of greenhouse gas emissions from a pork production chain. Journal of Cleaner Production, 2016, 129, 202-211.	4.6	29
88	Sensitivity to weighting in life cycle impact assessment (LCIA). International Journal of Life Cycle Assessment, 2020, 25, 2393-2406.	2.2	29
89	Assessing the sustainability of emerging technologies: A probabilistic LCA method applied to advanced photovoltaics. Journal of Cleaner Production, 2020, 259, 120968.	4.6	29
90	Bias in normalization: Causes, consequences, detection and remedies. International Journal of Life Cycle Assessment, 2007, 12, 211-216.	2.2	29

#	Article	IF	CITATIONS
91	Using LCAâ€based Decomposition Analysis to Study the Multidimensional Contribution of Technological Innovation to Environmental Pressures. Journal of Industrial Ecology, 2014, 18, 380-392.	2.8	28
92	Characterisation factors for life cycle impact assessment of sound emissions. Science of the Total Environment, 2014, 468-469, 280-291.	3.9	28
93	Investigating the inventory and characterization aspects of footprinting methods: lessons for the classification and integration of footprints. Journal of Cleaner Production, 2015, 108, 1028-1036.	4.6	28
94	A pseudo-statistical approach to treat choice uncertainty: the example of partitioning allocation methods. International Journal of Life Cycle Assessment, 2016, 21, 252-264.	2.2	28
95	A generalized computational structure for regional life-cycle assessment. International Journal of Life Cycle Assessment, 2017, 22, 213-221.	2.2	28
96	Amenity proximity analysis for sustainable brownfield redevelopment planning. Landscape and Urban Planning, 2018, 171, 68-79.	3.4	26
97	Green and Clean: Reviewing the Justification of Claims for Nanomaterials from a Sustainability Point of View. Sustainability, 2018, 10, 689.	1.6	25
98	Rethinking the Relationship between Footprints and LCA. Environmental Science & Technology, 2015, 49, 10-11.	4.6	24
99	LCA and decision making: when and how to use consequential LCA; 62nd LCA forum, Swiss Federal Institute of Technology, Z¼rich, 9 September 2016. International Journal of Life Cycle Assessment, 2017, 22, 296-301.	2.2	24
100	Towards optimal trade-offs between material and energy recovery for green waste. Waste Management, 2019, 93, 100-111.	3.7	24
101	Life Cycle Sustainability Analysis. Journal of Industrial Ecology, 2011, 15, 656-658.	2.8	23
102	Maximizing affluence within the planetary boundaries. International Journal of Life Cycle Assessment, 2014, 19, 1331.	2.2	22
103	Substance flows through the economy and environment of a region. Environmental Science and Pollution Research, 1995, 2, 89-89.	2.7	21
104	Toward a solution of allocation in life cycle inventories: the use of least-squares techniques. International Journal of Life Cycle Assessment, 2010, 15, 1020-1040.	2.2	21
105	Balance issues in monetary input–output tables. Ecological Economics, 2014, 102, 69-74.	2.9	21
106	Top-down characterization of resource use in LCA: from problem definition of resource use to operational characterization factors for dissipation of elements to the environment. International Journal of Life Cycle Assessment, 2020, 25, 2255-2273.	2.2	21
107	Rigorous proof of fuzzy error propagation with matrix-based LCI. International Journal of Life Cycle Assessment, 2010, 15, 1014-1019.	2.2	20
108	Implementation of uncertainty analysis and momentâ€independent global sensitivity analysis for fullâ€scale life cycle assessment models. Journal of Industrial Ecology, 2022, 26, 374-391.	2.8	20

#	Article	IF	CITATIONS
109	Building and Characterizing Regional and Global Emission Inventories of Toxic Pollutants. Environmental Science & Technology, 2014, 48, 5674-5682.	4.6	19
110	A framework for deciding on the inclusion of emerging impacts in life cycle impact assessment. Journal of Cleaner Production, 2014, 78, 152-163.	4.6	19
111	Assessing greenhouse gas emissions of milk production: which parameters are essential?. International Journal of Life Cycle Assessment, 2017, 22, 441-455.	2.2	19
112	Morphological and Molecular Characterization of Orchid Fruit Development. Frontiers in Plant Science, 2019, 10, 137.	1.7	19
113	Glassy dynamics of pinned charge-density waves. Physical Review B, 1990, 41, 11522-11528.	1.1	18
114	Calculating the influence of alternative allocation scenarios in fossil fuel chains. International Journal of Life Cycle Assessment, 2007, 12, 173-180.	2.2	18
115	Everything is relative and nothing is certain. Toward a theory and practice of comparative probabilistic LCA. International Journal of Life Cycle Assessment, 2019, 24, 1573-1579.	2.2	18
116	A tool to guide the selection of impact categories for LCA studies by using the representativeness index. Science of the Total Environment, 2019, 658, 768-776.	3.9	18
117	Risk Assessment and Life-cycle Assessment. Greener Management International, 2003, 2003, 77-87.	0.1	17
118	Critical Analysis of Methods for Integrating Economic and Environmental Indicators. Ecological Economics, 2018, 146, 549-559.	2.9	17
119	Is mainstream LCA linear?. International Journal of Life Cycle Assessment, 2020, 25, 1872-1882.	2.2	16
120	On the Use of Units in LCA (4 pp). International Journal of Life Cycle Assessment, 2005, 10, 173-176.	2.2	15
121	Simplified fate modelling in respect to ecotoxicological and human toxicological characterisation of emissions of chemical compounds. International Journal of Life Cycle Assessment, 2011, 16, 739-747.	2.2	15
122	Measures of Difference and Significance in the Era of Computer Simulations, Meta-Analysis, and Big Data. Entropy, 2016, 18, 361.	1.1	15
123	Pre-calculated LCI systems with uncertainties cannot be used in comparative LCA. International Journal of Life Cycle Assessment, 2017, 22, 461-461.	2.2	15
124	Implementation of stochastic multi attribute analysis (SMAA) in comparative environmental assessments. Environmental Modelling and Software, 2018, 109, 223-231.	1.9	15
125	Selecting the best product alternative in a sea of uncertainty. International Journal of Life Cycle Assessment, 2021, 26, 616-632.	2.2	15
126	Complexity and integrated resource management: uncertainty in LCA. International Journal of Life Cycle Assessment, 2004, 9, 341-342.	2.2	14

#	Article	IF	CITATIONS
127	The footprint family: comparison and interaction of the ecological, energy, carbon and water footprints. Revue De Metallurgie, 2013, 110, 77-86.	0.3	14
128	Moving from the material footprint to a resource depletion footprint. Integrated Environmental Assessment and Management, 2014, 10, 596-598.	1.6	14
129	A novel life cycle impact assessment method on biomass residue harvesting reckoning with loss of biomass productivity. Journal of Cleaner Production, 2014, 81, 137-145.	4.6	14
130	Moving from completing system boundaries to more realistic modeling of the economy in life cycle assessment. International Journal of Life Cycle Assessment, 2019, 24, 211-218.	2.2	14
131	Calculating the influence of alternative allocation scenarios in fossil fuel chains. International Journal of Life Cycle Assessment, 2007, 12, 173-180.	2.2	14
132	Dynamics of pinned charge density waves: Numerical simulations. Physica A: Statistical Mechanics and Its Applications, 1990, 166, 447-472.	1.2	13
133	Natural resource demand of global biofuels in the Anthropocene: A review. Renewable and Sustainable Energy Reviews, 2012, 16, 996-1003.	8.2	13
134	Power series expansion and structural analysis for life cycle assessment. International Journal of Life Cycle Assessment, 2007, 12, 381-390.	2.2	13
135	Life cycle assessmentâ€based Absolute Environmental Sustainability Assessment is also relative. Journal of Industrial Ecology, 2022, 26, 673-682.	2.8	13
136	Ecodesign — Carbon Footprint — Life Cycle Assessment — Life Cycle Sustainability Analysis. A Flexible Framework for a Continuum of Tools. Environmental and Climate Technologies, 2010, 4, 42-46.	0.2	12
137	On the usefulness of life cycle assessment of packaging. Environmental Management, 1995, 19, 665-668.	1.2	10
138	Modelling fate for LCA. International Journal of Life Cycle Assessment, 1996, 1, 237.	2.2	10
139	Energy Efficient Emulsion Polymerization Strategies. Macromolecular Reaction Engineering, 2008, 2, 90-98.	0.9	10
140	Environmental Accounting of Eco-innovations through Environmental Input–Output Analysis: The Case of Hydrogen and Fuel Cells Buses. Economic Systems Research, 2008, 20, 303-318.	1.2	10
141	There Is Still Room for a Footprint Family without a Life Cycle Approach—Comment on "Towards an Integrated Family of Footprint Indicators― Journal of Industrial Ecology, 2014, 18, 71-72.	2.8	10
142	Indirect land use change and biofuels: Mathematical analysis reveals a fundamental flaw in the regulatory approach. Biomass and Bioenergy, 2014, 71, 408-412.	2.9	9
143	Patent analysis as a novel method for exploring commercial interest in wild harvested species. Biological Conservation, 2020, 243, 108454.	1.9	9
144	Key Issues in Conducting Life Cycle Assessment of Bio-Based Renewable Energy Sources. Green Energy and Technology, 2013, , 13-36.	0.4	9

#	Article	IF	CITATIONS
145	Topological Network Theory and Its Application to LCA and IOA and Related Industrial Ecology Tools: Principles and Promise. Journal of Environmental Accounting and Management, 2015, 3, 151-167.	0.3	9
146	Life Cycle Assessment of Noise Emissions: Comment on a Recent Publication. Environmental Modeling and Assessment, 2017, 22, 183-184.	1.2	8
147	Resource depletion potentials from bottom-up models: Population dynamics and the Hubbert peak theory. Science of the Total Environment, 2019, 650, 1303-1308.	3.9	8
148	A maximum likelihood approach to correlation dimension and entropy estimation. Bulletin of Mathematical Biology, 1992, 54, 45-58.	0.9	7
149	Human and Ecological Life Cycle Tools for the Integrated Assessment of Systems (HELIAS). International Journal of Life Cycle Assessment, 2006, 11, 19-28.	2.2	7
150	Comment on "Resource Footprints are Good Proxies of Environmental Damage― Environmental Science & Technology, 2017, 51, 13054-13055.	4.6	7
151	Introduction to Life Cycle Assessment. Springer Series in Supply Chain Management, 2017, , 15-41.	0.5	7
152	A rapid review of meta-analyses and systematic reviews of environmental footprints of food commodities and diets. Global Food Security, 2021, 28, 100508.	4.0	7
153	Inflorescence lignification of natural species and horticultural hybrids of Phalaenopsis orchids. Scientia Horticulturae, 2022, 295, 110845.	1.7	7
154	Ratio, Sum, or Weighted Sum? The Curious Case of BASF's Eco-efficiency Analysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 8754-8762.	3.2	7
155	Contribution-based prioritization of LCI database improvements: the most important unit processes in ecoinvent. International Journal of Life Cycle Assessment, 2019, 24, 1778-1792.	2.2	6
156	Meta-comparisons: how to compare methods for LCA?. International Journal of Life Cycle Assessment, 2022, 27, 993-1015.	2.2	6
157	The Green Economy Mirage?. Journal of Industrial Ecology, 2013, 17, 835-845.	2.8	5
158	Pollination of <i>Habenaria tridactylites</i> on the Canary Islands. Nordic Journal of Botany, 2019, 37,	0.2	5
159	The average versus marginal debate in LCIA: paradigm regained. International Journal of Life Cycle Assessment, 2021, 26, 22-25.	2.2	5
160	Urban Metabolism: Many Open Questions for Future Answers. , 2014, , 23-32.		5
161	Sustainability Analysis and Systems of Linear Equations in the Era of Data Abundance. Journal of Environmental Accounting and Management, 2015, 3, 109-122.	0.3	5
162	Resource depletion in life•ycle assessment. Environmental Toxicology and Chemistry, 1996, 15, 1442-1444.	2.2	4

#	Article	IF	CITATIONS
163	Development and Application of Dynamic Hybrid Multi-Region Inventory Analysis for Macro-level Environmental Policy Analysis: A Case Study on Climate Policy in Taiwan. Environmental Science & Technology, 2013, 47, 2512-2519.	4.6	4
164	The role of impact characterization in carbon footprinting. Frontiers in Ecology and the Environment, 2015, 13, 130-131.	1.9	4
165	Mathematics and the Anthropocene equation: Comment on Gaffney O and Steffen W (2017) The Anthropocene equation. <i>The Anthropocene Review</i> 4:53-61. Infrastructure Asset Management, 2017, 4, 259-263.	1.2	4
166	Uncertainty Analysis in Embodied Carbon Assessments: What Are the Implications of Its Omission?. , 2018, , 3-21.		4
167	Biodiesel Production and Consumption: Life Cycle Assessment (LCA) Approach. Biofuel and Biorefinery Technologies, 2019, , 161-192.	0.1	4
168	Multifunctionality in Life Cycle Inventory Analysis: Approaches and Solutions. LCA Compendium, 2021, , 73-95.	0.8	4
169	Software as a bridge between theory and practice in life cycle assessment. Journal of Cleaner Production, 1993, 1, 185-189.	4.6	3
170	No Matter – How?: Dealing with Matterâ€less Stressors in LCA of Wind Energy Systems. Journal of Industrial Ecology, 2017, 21, 70-81.	2.8	3
171	Tackling Missing Heritability by Use of an Optimum Curve: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2019, 20, 5104.	1.8	3
172	Efficient computation of environmentally extended input–output scenario and circular economy modeling. Journal of Industrial Ecology, 2020, 24, 976-985.	2.8	3
173	Analysis of Physical Interactions Between the Economy and the Environment. , 2009, , 207-237.		3
174	Dynabox: A dynamic multi-media fate model with applications to heavy metals. Environment & Policy, 2000, , 65-76.	0.4	3
175	Environmental Externalities of Secondhand Markets—Based on a Dutch Auctioning Company. Sustainability, 2022, 14, 1682.	1.6	3
176	Leveraging Life Cycle Assessment to Better Promote the Circular Economy: A First Step Using the Concept of Opportunity Cost. Sustainability, 2022, 14, 3451.	1.6	3
177	One Process Does Not Make a Life Cycle—Comment to Marcinkowski and Kopania. Energies, 2021, 14, 1956.	1.6	2
178	Response: Commentary: System Expansion and Substitution in LCA: A Lost Opportunity of ISO 14044 Amendment 2. Frontiers in Sustainability, 2021, 2, .	1.3	2
179	Modeling Production Efficiency and Greenhouse Gas Objectives as a Function of Forage Production of Dairy Farms Using Copula Models. Environmental Modeling and Assessment, 0, , 1.	1.2	2
180	A theory of the environment and economic systems a unified framework for ecological economic analysis and decision support. International Journal of Life Cycle Assessment, 2003, 8, 381-381.	2.2	1

#	Article	IF	CITATIONS
181	A theory of the environment and economic systems. International Journal of Life Cycle Assessment, 2004, 9, 71-71.	2.2	1
182	Analyzing the effects of the choice of model in the context of marginal changes in final demand. Journal of Economic Structures, 2019, 8, .	0.6	1
183	Waste is not a service. International Journal of Life Cycle Assessment, 2021, 26, 1538-1540.	2.2	1
184	Where have all the equations gone? A unified view on semi-quantitative problem structuring and modelling. Journal of the Operational Research Society, 2023, 74, 290-309.	2.1	1
185	The revised mathematics of life cycle sustainability assessment. Journal of Cleaner Production, 2022, 350, 131380.	4.6	1
186	Six areas of methodological debate on attributional life cycle assessment. E3S Web of Conferences, 2022, 349, 03007.	0.2	1
187	Books: Practical Handbook of Material Flow Analysis. Journal of Industrial Ecology, 2008, 10, 293-294.	2.8	0
188	On criteria for the evaluation of life cycle assessment software. International Journal of Life Cycle Assessment, 2017, 22, 1475-1476.	2.2	0
189	An Illustration of the LCA Technique. , 2009, , 375-383.		0
190	Practice without theory: a reply to the note from Huijbregts, Hellweg, and Hertwich on the average versus marginal debate in life cycle impact assessment. International Journal of Life Cycle Assessment, 2021, 26, 2196-2198.	2.2	0
191	Pollination strategy of Gennaria diphylla (Orchidaceae) on the Canary Islands and on Madeira. Mediterranean Botany, 0, 43, e73718.	0.9	0
192	Two arguments against the use of radar plots for constructing composite indicators. Brazilian Journal of Chemical Engineering, 0, , 1.	0.7	0