H Douglas Goff

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2741701/h-douglas-goff-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

215 8,100 53 78 g-index

225 9,295 6.4 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
215	The hydration rate of konjac glucomannan after consumption affects its in vivo glycemic response and appetite sensation and in vitro digestion characteristics. <i>Food Hydrocolloids</i> , 2022 , 122, 107102	10.6	2
214	Sliced versus formulated potato chips Does food structure alter lipid digestion?. <i>Food Structure</i> , 2022 , 32, 100272	4.3	
213	Comparison of synergistic interactions of yellow mustard gum with locust bean gum or Etarrageenan**. <i>Food Hydrocolloids</i> , 2022 , 107804	10.6	, O
212	Structural characterization and immunomodulatory activity of mycelium polysaccharide from liquid fermentation of Monascus purpureus (Hong Qu). <i>Carbohydrate Polymers</i> , 2021 , 262, 117945	10.3	2
211	Catechin-grafted arabinoxylan conjugate: Preparation, structural characterization and property investigation. <i>International Journal of Biological Macromolecules</i> , 2021 , 182, 796-805	7.9	3
210	Effect of texture and structure of polysaccharide hydrogels containing maltose on release and hydrolysis of maltose during digestion: In vitro study. <i>Food Hydrocolloids</i> , 2021 , 112, 106326	10.6	4
209	Effect of high concentrated sucrose on the stability of OSA-starch-based beta-carotene microcapsules. <i>Food Hydrocolloids</i> , 2021 , 113, 105472	10.6	6
208	Fluorescent labeling affected the structural/conformational properties of arabinoxylans. <i>Carbohydrate Polymers</i> , 2021 , 265, 118064	10.3	3
207	Extraction and preservation of lycopene: A review of the advancements offered by the value chain of nanotechnology. <i>Trends in Food Science and Technology</i> , 2021 , 116, 1120-1140	15.3	4
206	Interaction between Elactoglobulin and chlorogenic acid and its effect on antioxidant activity and thermal stability. <i>Food Hydrocolloids</i> , 2021 , 121, 107059	10.6	7
205	Regulation of nano-encapsulated tea polyphenol release from gelatin films with different Bloom values. <i>Food Hydrocolloids</i> , 2020 , 108, 106045	10.6	17
204	The effect of viscous soluble dietary fiber on nutrient digestion and metabolic responses II: In vivo digestion process. <i>Food Hydrocolloids</i> , 2020 , 107, 105908	10.6	8
203	Improvement in physicochemical properties of collagen casings by glutaraldehyde cross-linking and drying temperature regulating. <i>Food Chemistry</i> , 2020 , 318, 126404	8.5	16
202	Versatile preparation of spherically and mechanically controllable liquid-core-shell alginate-based bead through interfacial gelation. <i>Carbohydrate Polymers</i> , 2020 , 236, 115980	10.3	13
201	The effect of viscous soluble dietary fiber on nutrient digestion and metabolic responses I: In vitro digestion process. <i>Food Hydrocolloids</i> , 2020 , 107, 105971	10.6	8
200	Analysis of kinetic parameters and mechanisms of nanocrystalline cellulose inhibition of the mylase and the figure of the figure	6.1	6
199	Role of Milk Fat in Dairy Products 2020 , 245-305		1

198	Fabrication of films with tailored properties by regulating the swelling of collagen fiber through pH adjustment. <i>Food Hydrocolloids</i> , 2020 , 108, 106016	10.6	11
197	Structural characterisation and immunomodulatory activity of exopolysaccharides from liquid fermentation of Monascus purpureus (Hong Qu). <i>Food Hydrocolloids</i> , 2020 , 103, 105636	10.6	16
196	Enhancing the prebiotic effect of cellulose biopolymer in the gut by physical structuring via particle size manipulation. <i>Food Research International</i> , 2020 , 131, 108935	7	16
195	Role of Amino Acids in Blood Glucose Changes in Young Adults Consuming Cereal with Milks Varying in Casein and Whey Concentrations and Their Ratio. <i>Journal of Nutrition</i> , 2020 , 150, 3103-3113	4.1	2
194	Effect of pre-treatment temperatures on the film-forming properties of collagen fiber dispersions. <i>Food Hydrocolloids</i> , 2020 , 107, 105326	10.6	12
193	Facile preparation of collagen fiber-glycerol-carboxymethyl cellulose composite film by immersing method. <i>Carbohydrate Polymers</i> , 2020 , 229, 115429	10.3	11
192	Polysaccharides from sunflower stalk pith: Chemical, structural and functional characterization. <i>Food Hydrocolloids</i> , 2020 , 100, 105082	10.6	16
191	The effect of sodium alginate on nutrient digestion and metabolic responses during both in vitro and in vivo digestion process. <i>Food Hydrocolloids</i> , 2020 , 107, 105304	10.6	11
190	Heat-induced gel formation of a protein-rich extract from the microalga Chlorella sorokiniana. <i>Innovative Food Science and Emerging Technologies</i> , 2019 , 56, 102176	6.8	9
189	Effects of soy proteins and hydrolysates on fat globule coalescence and meltdown properties of ice cream. <i>Food Hydrocolloids</i> , 2019 , 94, 279-286	10.6	22
188	Interfacial Activity and Self-Assembly Behavior of Dissolved and Granular Octenyl Succinate Anhydride Starches. <i>Langmuir</i> , 2019 , 35, 4702-4709	4	9
187	Impact of soy proteins, hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 177, 550-558	6	36
186	Influence of cellulose nanofibrils on the structural elements of ice cream. <i>Food Hydrocolloids</i> , 2019 , 87, 204-213	10.6	40
185	The Structure and Properties of Ice Cream and Frozen Desserts 2019 , 47-54		5
184	The antioxidant mechanism of Maillard reaction products in oil-in-water emulsion system. <i>Food Hydrocolloids</i> , 2019 , 87, 582-592	10.6	29
183	Adsorption mechanism modeling using lead (Pb) sorption data on modified rice bran-insoluble fiber as universal approach to assess other metals toxicity. <i>International Journal of Food Properties</i> , 2019 , 22, 1397-1410	3	5
182	Increased milk protein content and whey-to-casein ratio in milk served with breakfast cereal reduce postprandial glycemia in healthy adults: An examination of mechanisms of action. <i>Journal of Dairy Science</i> , 2019 , 102, 6766-6780	4	9
181	Emulsifiers in Dairy Products and Dairy Substitutes 2019 , 217-254		4

180	Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. <i>Food Hydrocolloids</i> , 2019 , 94, 48-56	10.6	49
179	Lipid digestion of oil-in-water emulsions stabilized with low molecular weight surfactants. <i>Food and Function</i> , 2019 , 10, 8195-8207	6.1	8
178	Correlating in vitro digestion viscosities and bioaccessible nutrients of milks containing enhanced protein concentration and normal or modified protein ratio to human trials. <i>Food and Function</i> , 2019 , 10, 7687-7696	6.1	2
177	Study on the emulsifying stability and interfacial adsorption of pea proteins. <i>Food Hydrocolloids</i> , 2019 , 88, 247-255	10.6	70
176	Effect of aging treatment on the physicochemical properties of collagen films. <i>Food Hydrocolloids</i> , 2019 , 87, 436-447	10.6	38
175	Inhibition of hmylase and amyloglucosidase by nanocrystalline cellulose and spectroscopic analysis of their binding interaction mechanism. <i>Food Hydrocolloids</i> , 2019 , 90, 341-352	10.6	16
174	Study on starch-protein interactions and their effects on physicochemical and digestible properties of the blends. <i>Food Chemistry</i> , 2019 , 280, 51-58	8.5	80
173	Pectic polysaccharides from hawthorn: Physicochemical and partial structural characterization. <i>Food Hydrocolloids</i> , 2019 , 90, 146-153	10.6	23
172	Structural and conformational characterization of arabinoxylans from flaxseed mucilage. <i>Food Chemistry</i> , 2018 , 254, 266-271	8.5	29
171	Rheological behavior of dietary fibre in simulated small intestinal conditions. <i>Food Hydrocolloids</i> , 2018 , 76, 216-225	10.6	21
170	Impact of dietary fibre on in vitro digestibility of modified tapioca starch: viscosity effect. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2018 , 15, 2-11	3.4	10
169	Structural characterisation of galacto-oligosaccharides (VITAGOS) sythesized by transgalactosylation of lactose. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2018 , 14, 33-38	3.4	10
168	Dietary fibre for glycaemia control: Towards a mechanistic understanding. <i>Bioactive Carbohydrates</i> and <i>Dietary Fibre</i> , 2018 , 14, 39-53	3.4	61
167	The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion. <i>Carbohydrate Polymers</i> , 2018 , 200, 436-445	10.3	28
166	Effect of milk protein intake and casein-to-whey ratio in breakfast meals on postprandial glucose, satiety ratings, and subsequent meal intake. <i>Journal of Dairy Science</i> , 2018 , 101, 8688-8701	4	16
165	Distribution of octenylsuccinic groups in modified waxy maize starch: An analysis at granular level. <i>Food Hydrocolloids</i> , 2018 , 84, 210-218	10.6	21
164	Fractionation of polysaccharides by gradient non-solvent precipitation: A review. <i>Trends in Food Science and Technology</i> , 2018 , 81, 108-115	15.3	40
163	Functionality and nutritional aspects of microcrystalline cellulose in food. <i>Carbohydrate Polymers</i> , 2017 , 172, 159-174	10.3	85

162	Investigation of mechanisms involved in postprandial glycemia and insulinemia attenuation with dietary fibre consumption. <i>Food and Function</i> , 2017 , 8, 2142-2154	6.1	28
161	Physicochemical stability of Etarotene and Etocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 529, 550-559	5.1	31
160	Properties of Arabinoxylans in Frozen Dough Enriched with Wheat Fiber. <i>Cereal Chemistry</i> , 2017 , 94, 242-250	2.4	4
159	Pudding products enriched with yellow mustard mucilage, fenugreek gum or flaxseed mucilage and matched for simulated intestinal viscosity significantly reduce postprandial peak glucose and insulin in adults at risk for type 2 diabetes. <i>Journal of Functional Foods</i> , 2017 , 37, 603-611	5.1	14
158	Physicochemical properties of Etarotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material. <i>Food Hydrocolloids</i> , 2017 , 73, 274-283	10.6	38
157	Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation. <i>Carbohydrate Polymers</i> , 2016 , 151, 538-545	10.3	19
156	Milk Proteins in Ice Cream 2016 , 329-345		5
155	Interaction of mealtime ad libitum beverage and food intake with meal advancement in healthy young men and women. <i>Physiology and Behavior</i> , 2015 , 143, 39-44	3.5	3
154	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan): Part V. Fractionation and structural heterogeneity of different fractions. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2015 , 5, 106-1	₽5 ⁴	15
153	Simulated intestinal hydrolysis of native tapioca starch: Understanding the effect of soluble fibre. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2015 , 6, 83-98	3.4	14
152	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan): part II. Fine structures of O-acetylated residues. <i>Carbohydrate Polymers</i> , 2015 , 117, 422-433	10.3	80
151	Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. <i>Food and Function</i> , 2015 , 6, 63-71	6.1	26
150	Ice Cream and Frozen Desserts 2015 , 1-15		1
149	Short-chain fatty acid profiles from flaxseed dietary fibres after in vitro fermentation of pig colonic digesta: Structureflunction relationship. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2015 , 6, 62-68	3.4	12
148	Arabinan-rich rhamnogalacturonan-I from flaxseed kernel cell wall. Food Hydrocolloids, 2015, 47, 158-16	7 10.6	26
147	Soluble polysaccharides from flaxseed kernel as a new source of dietary fibres: Extraction and physicochemical characterization. <i>Food Research International</i> , 2014 , 56, 166-173	7	32
146	Mechanism of action of whole milk and its components on glycemic control in healthy young men. Journal of Nutritional Biochemistry, 2014 , 25, 1124-1131	6.3	30
145	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan : Part I. Extraction, purification, and partial structural characterization. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2014 , 4, 74-83	3.4	84

144	The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. <i>Food Hydrocolloids</i> , 2014 , 35, 718-726	10.6	114
143	Effect of sodium alginate addition to chocolate milk on glycemia, insulin, appetite and food intake in healthy adult men. <i>European Journal of Clinical Nutrition</i> , 2014 , 68, 613-8	5.2	26
142	Effect of okra cell wall and polysaccharide on physical properties and stability of ice cream. <i>Journal of Food Science</i> , 2014 , 79, E1522-7	3.4	21
141	Basil seed gum as a novel stabilizer for structure formation and reduction of ice recrystallization in ice cream. <i>Dairy Science and Technology</i> , 2013 , 93, 273-285		48
140	Caloric beverages consumed freely at meal-time add calories to an ad libitum meal. <i>Appetite</i> , 2013 , 65, 75-82	4.5	41
139	The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. <i>Journal of Food Science</i> , 2013 , 78, C1334-9	3.4	95
138	Development of formulations and processes to incorporate wax oleogels in ice cream. <i>Journal of Food Science</i> , 2013 , 78, C1845-51	3.4	56
137	Dairy Product Processing Equipment 2013 , 199-221		5
136	Covalent attachment of fenugreek gum to soy whey protein isolate through natural Maillard reaction for improved emulsion stability. <i>Food Hydrocolloids</i> , 2013 , 30, 552-558	10.6	74
135	Emulsifying properties of soy whey protein isolatefenugreek gum conjugates in oil-in-water emulsion model system. <i>Food Hydrocolloids</i> , 2013 , 30, 691-697	10.6	67
134	Energy and macronutrient content of familiar beverages interact with pre-meal intervals to determine later food intake, appetite and glycemic response in young adults. <i>Appetite</i> , 2013 , 60, 154-16	51 ⋅5	40
133	A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from Dendrobium plants. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2013 , 1, 131-147	3.4	109
132	Mix Ingredients 2013 , 45-87		2
131	Ice Cream 2013 ,		88
130	Freezing and Refrigeration 2013 , 193-248		
129	Effects of pig colonic digesta and dietary fibres on in vitro microbial fermentation profiles. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 120-130	3.4	9
128	Effects of soy-soluble fiber and flaxseed gum on the glycemic and insulinemic responses to glucose solutions and dairy products in healthy adult males. <i>Journal of the American College of Nutrition</i> , 2013 , 32, 98-110	3.5	14
127	Milk 2013 , 187-214		O

126	Analyzing Frozen Desserts 2013 , 403-436		2
125	Formulations for Specialty Products 2013 , 437-453		
124	Mix Processing and Properties 2013 , 121-154		1
123	Mealtime beverage and food intake to satiation interacts with meal advancement in healthy young men and women. <i>FASEB Journal</i> , 2013 , 27, 237.5	0.9	
122	Ice Cream Structure 2013 , 313-352		13
121	Shelf Life 2013 , 353-378		2
120	Calculation of Ice Cream Mixes 2013 , 155-191		2
119	Fat structures as affected by unsaturated or saturated monoglyceride and their effect on ice cream structure, texture and stability. <i>International Dairy Journal</i> , 2012 , 24, 33-39	3.5	24
118	Ice structuring proteins from plants: Mechanism of action and food application. <i>Food Research International</i> , 2012 , 46, 425-436	7	67
117	Structural elucidation of rhamnogalacturonans from flaxseed hulls. <i>Carbohydrate Research</i> , 2012 , 362, 47-55	2.9	52
116	A molecular modeling approach to understand conformation functionality relationships of galactomannans with different mannose/galactose ratios. <i>Food Hydrocolloids</i> , 2012 , 26, 359-364	10.6	60
115	Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. <i>Food Hydrocolloids</i> , 2012 , 28, 275-283	10.6	118
114	Fat structure in ice cream: A study on the types of fat interactions. <i>Food Hydrocolloids</i> , 2012 , 29, 152-159	910.6	44
113	Effects of high pressure treatment of mix on ice cream manufacture. <i>International Dairy Journal</i> , 2011 , 21, 718-726	3.5	32
112	Enhancement of fat colloidal interactions for the preparation of ice cream high in unsaturated fat. <i>International Dairy Journal</i> , 2011 , 21, 540-547	3.5	22
111	Stress relaxation in synergistically associated polysaccharides: Galactomananns and a non-pectic polysaccharide fraction from yellow mustard mucilage. <i>Carbohydrate Polymers</i> , 2011 , 84, 984-989	10.3	4
110	NMR analysis of a methylated non-pectic polysaccharide from water soluble yellow mustard mucilage. <i>Carbohydrate Polymers</i> , 2011 , 84, 69-75	10.3	12
109	THE EFFECT OF PHASE SEPARATION ON ENZYME KINETICS IN FROZEN SUGAR SOLUTIONS CONTAINING PROTEIN AND POLYSACCHARIDE. <i>Journal of Food Biochemistry</i> , 2010 , 34, 283-294	3.3	

108	Effect of solid fat content on structure in ice creams containing palm kernel oil and high-oleic sunflower oil. <i>Journal of Food Science</i> , 2010 , 75, C274-9	3.4	34
107	Heat stability of aggregated particles of casein micelles and kappa-carrageenan. <i>Journal of Food Science</i> , 2010 , 75, C433-8	3.4	3
106	Perceived creaminess and viscosity of aggregated particles of casein micelles and kappa-carrageenan. <i>Journal of Food Science</i> , 2010 , 75, S255-62	3.4	18
105	Addition of soluble soybean polysaccharides to dairy products as a source of dietary fiber. <i>Journal of Food Science</i> , 2010 , 75, C478-84	3.4	30
104	Glass Transition in Frozen Foods 2010 , 1-5		
103	Flaxseed gums and their adsorption on whey protein-stabilized oil-in-water emulsions. <i>Food Hydrocolloids</i> , 2009 , 23, 611-618	10.6	55
102	Fractionation and partial characterization of non-pectic polysaccharides from yellow mustard mucilage. <i>Food Hydrocolloids</i> , 2009 , 23, 1535-1541	10.6	36
101	Microstructure and rheological properties of psyllium polysaccharide gel. <i>Food Hydrocolloids</i> , 2009 , 23, 1542-1547	10.6	92
100	Effect of protein supplementation on the rheological characteristics of milk permeates fermented with exopolysaccharide-producing Lactococcus lactis subsp. cremoris. <i>Food Hydrocolloids</i> , 2009 , 23, 12	99 ¹ 130	₄ 35
99	Rheological investigation of synergistic interactions between galactomannans and non-pectic polysaccharide fraction from water soluble yellow mustard mucilage. <i>Carbohydrate Polymers</i> , 2009 , 78, 112-116	10.3	16
98	An investigation of four commercial galactomannans on their emulsion and rheological properties. <i>Food Research International</i> , 2009 , 42, 1141-1146	7	116
97	Ice recrystallization inhibition in ice cream by propylene glycol monostearate. <i>Journal of Food Science</i> , 2008 , 73, E463-8	3.4	23
96	Effect of trehalose on the glass transition and ice crystal growth in ice cream. <i>International Journal of Food Science and Technology</i> , 2008 , 43, 510-516	3.8	25
95	Physicochemical and sensory optimisation of a low glycemic index ice cream formulation. International Journal of Food Science and Technology, 2008, 43, 1520-1527	3.8	25
94	Production and functional properties of micellar casein/Ecarrageenan aggregates. <i>International Dairy Journal</i> , 2008 , 18, 64-71	3.5	8
93	65 Years of ice cream science. <i>International Dairy Journal</i> , 2008 , 18, 754-758	3.5	37
92	Production, isolation and characterization of exopolysaccharides produced by Lactococcus lactis subsp. cremoris JFR1 and their interaction with milk proteins: Effect of pH and media composition. <i>International Dairy Journal</i> , 2008 , 18, 1109-1118	3.5	50
91	Physicochemical properties of whey protein isolate stabilized oil-in-water emulsions when mixed with flaxseed gum at neutral pH. <i>Food Research International</i> , 2008 , 41, 964-972	7	37

(2006-2008)

90	Interactions between milk proteins and exopolysaccharides produced by Lactococcus lactis observed by scanning electron microscopy. <i>Journal of Dairy Science</i> , 2008 , 91, 2583-90	4	49
89	Effect of calcium chloride addition on ice cream structure and quality. <i>Journal of Dairy Science</i> , 2008 , 91, 2165-74	4	26
88	Rheological investigation and molecular architecture of highly hydrated gluten networks at subzero temperatures. <i>Journal of Food Engineering</i> , 2008 , 89, 42-48	6	20
87	Aggregation of casein micelles and Etarrageenan in reconstituted skim milk. <i>Food Hydrocolloids</i> , 2008 , 22, 56-64	10.6	38
86	Effect of aging and ice-structuring proteins on the physical properties of frozen flour water mixtures. <i>Food Hydrocolloids</i> , 2008 , 22, 1135-1147	10.6	49
85	Dairy Product Processing Equipment 2007 , 193-214		
84	ISOLATION AND CHARACTERIZATION OF ICE STRUCTURING PROTEINS FROM COLD-ACCLIMATED WINTER WHEAT GRASS EXTRACT FOR RECRYSTALLIZATION INHIBITION IN FROZEN FOODS. Journal of Food Biochemistry, 2007 , 31, 139-160	3.3	33
83	Structure-engineering of ice-cream and foam-based foods 2007 , 557-574		5
82	Casein molecular assembly affects the properties of milk fat emulsions encapsulated in lactose or trehalose matrices. <i>International Dairy Journal</i> , 2007 , 17, 683-695	3.5	25
81	Effect of aging and ice structuring proteins on the morphology of frozen hydrated gluten networks. <i>Biomacromolecules</i> , 2007 , 8, 1293-9	6.9	47
80	Calorimetric and Microstructural Investigation of Frozen Hydrated Gluten. Food Biophysics, 2006, 1, 202	2-3.125	35
79	Structural heterogeneity and its effect on the glass transition in sucrose solutions containing protein and polysaccharide. <i>Food Hydrocolloids</i> , 2006 , 20, 774-779	10.6	20
78	Immobilization of casein micelles for probing their structure and interactions with polysaccharides using scanning electron microscopy (SEM). <i>Food Hydrocolloids</i> , 2006 , 20, 817-824	10.6	67
77	Effects of whey protein aggregation on fat globule microstructure in whipped-frozen emulsions. <i>Food Hydrocolloids</i> , 2006 , 20, 1050-1056	10.6	22
76	Major advances in fresh milk and milk products: fluid milk products and frozen desserts. <i>Journal of Dairy Science</i> , 2006 , 89, 1163-73	4	53
75	Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. <i>Journal of Dairy Science</i> , 2006 , 89, 49-57	4	105
74	Dairy research in Canadian universities. International Journal of Dairy Technology, 2006, 59, 159-165	3.7	
73	Spray Drying of High-sucrose Dairy Emulsions: Feasibility and Physicochemical Properties. <i>Journal of Food Science</i> , 2006 , 70, E244-E251	3.4	30

72	Freezing and Ice Recrystallization Properties of Sucrose Solutions Containing Ice Structuring Proteins from Cold-Acclimated Winter Wheat Grass Extract. <i>Journal of Food Science</i> , 2006 , 70, E552-E55	5∂·4	29
71	Phase separation in soft-serve ice cream mixes: rheology and microstructure. <i>International Dairy Journal</i> , 2005 , 15, 249-254	3.5	39
70	On fat destabilization and composition of the air interface in ice cream containing saturated and unsaturated monoglyceride. <i>International Dairy Journal</i> , 2005 , 15, 495-500	3.5	44
69	Effect of Earrageenan addition to dairy emulsions containing sodium caseinate and locust bean gum. <i>Food Hydrocolloids</i> , 2005 , 19, 187-195	10.6	51
68	Extraction and physicochemical characterization of Krueo Ma Noy pectin. <i>Food Hydrocolloids</i> , 2005 , 19, 793-801	10.6	94
67	Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. <i>Food Hydrocolloids</i> , 2005 , 19, 371-377	10.6	134
66	Modified starches and the stability of frozen foods 2004 , 425-440		4
65	Freeze-substitution and low-temperature embedding of dairy products for transmission electron microscopy. <i>Journal of Microscopy</i> , 2004 , 213, 63-9	1.9	12
64	Modeling the nucleation and crystallization kinetics of a palm stearin/canola oil blend and lard in bulk and emulsified form. <i>JAOCS, Journal of the American Oil Chemistst Society</i> , 2004 , 81, 213-219	1.8	12
63	Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. <i>Colloids and Surfaces B: Biointerfaces</i> , 2004 , 34, 113-21	6	92
62	Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. <i>Carbohydrate Polymers</i> , 2004 , 58, 391-400	10.3	158
61	Protein distribution at air interfaces in dairy foams and ice cream as affected by casein dissociation and emulsifiers. <i>International Dairy Journal</i> , 2004 , 14, 647-657	3.5	48
60	A possible structure of the casein micelle based on high-resolution field-emission scanning electron microscopy. <i>International Dairy Journal</i> , 2004 , 14, 1025-1031	3.5	182
59	Foods at Subzero Temperatures 2004 , 299-320		
58	Ice Cream 2003 ,		112
57	The rheology of liquids: a comparison of clinicians Rsubjective impressions and objective measurement. <i>Dysphagia</i> , 2003 , 18, 182-95	3.7	82
56	Structure and ice recrystallization in frozen stabilized ice cream model systems. <i>Food Hydrocolloids</i> , 2003 , 17, 95-102	10.6	159
55	Cryo-gelation of galactomannans in ice cream model systems. <i>Food Hydrocolloids</i> , 2003 , 17, 161-169	10.6	56

(2000-2003)

54	Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. <i>Thermochimica Acta</i> , 2003 , 399, 43-55	2.9	64
53	Effect of Earrageenan on milk protein polysaccharide mixtures. <i>International Dairy Journal</i> , 2003 , 13, 763-771	3.5	64
52	Composition and Properties 2003 , 11-54		7
51	Analyzing Frozen Desserts 2003 , 295-325		1
50	Ice Cream Ingredients 2003 , 55-87		4
49	The Freezing Process 2003 , 171-206		2
48	Microstructural Analyses to Study Ingredient Functionality, Interactions and Quality in Frozen Foods <i>Microscopy and Microanalysis</i> , 2002 , 8, 238-239	0.5	
47	Light Microscopy and TEM to Study the Effect of Biopolymers on Ice Recrystallization in Ice Cream. <i>Microscopy and Microanalysis</i> , 2002 , 8, 246-247	0.5	1
46	Exchange reactions between whey proteins and caseins in heated soya oil-in-water emulsion systems [behavior of individual proteins. <i>Food Hydrocolloids</i> , 2002 , 16, 295-302	10.6	25
45	Exchange reactions between whey proteins and caseins in heated soya oil-in-water emulsion systems [bverall aspects of the reaction. <i>Food Hydrocolloids</i> , 2002 , 16, 303-311	10.6	40
44	Formation and stabilisation of structure in ice-cream and related products. <i>Current Opinion in Colloid and Interface Science</i> , 2002 , 7, 432-437	7.6	119
43	Effect of biopolymers on structure and ice recrystallization in dynamically frozen ice cream model systems. <i>Journal of Dairy Science</i> , 2002 , 85, 2722-32	4	80
42	A modified ice cream processing routine that promotes fat destabilization in the absence of added emulsifier. <i>International Dairy Journal</i> , 2002 , 12, 1013-1018	3.5	45
41	Comparison of crystallization properties of a palm stearin/canola oil blend and lard in bulk and emulsified form. <i>Food Research International</i> , 2002 , 35, 935-944	7	37
40	Secondary adsorption of milk proteins from the continuous phase to the oilwater interface in dairy emulsions. <i>International Dairy Journal</i> , 2002 , 12, 889-897	3.5	31
39	Changes in protein and fat structure in whipped cream caused by heat treatment and addition of stabilizer to the cream. <i>Food Research International</i> , 2000 , 33, 697-706	7	31
38	Microstructure and rheological properties of whipped cream as affected by heat treatment and addition of stabilizer. <i>International Dairy Journal</i> , 2000 , 10, 295-301	3.5	58
37	Correlation between colloidal properties of ice cream mix and ice cream. <i>International Dairy Journal</i> , 2000 , 10, 303-309	3.5	109

36	Influence of emulsifiers on ice cream produced by conventional freezing and low-temperature extrusion processing. <i>International Dairy Journal</i> , 2000 , 10, 497-504	3.5	58
35	Relationships between ice cream mix viscoelasticity and ice crystal growth in ice cream. <i>International Dairy Journal</i> , 2000 , 10, 791-797	3.5	69
34	Fluorescence microscopy to study galactomannan structure in frozen sucrose and milk protein solutions. <i>Food Hydrocolloids</i> , 1999 , 13, 353-362	10.6	71
33	Determination of protein surface concentration for emulsions containing a partially crystalline dispersed phase. <i>Food Hydrocolloids</i> , 1999 , 13, 291-297	10.6	17
32	Ice Crystal Size Distributions in Dynamically Frozen Model Solutions and Ice Cream as Affected by Stabilizers. <i>Journal of Dairy Science</i> , 1999 , 82, 1399-1407	4	97
31	Recrystallization in Ice Cream After Constant and Cycling Temperature Storage Conditions as Affected by Stabilizers. <i>Journal of Dairy Science</i> , 1999 , 82, 1408-1415	4	72
30	Whipped Cream Structure Measured by Quantitative Stereology. <i>Journal of Dairy Science</i> , 1999 , 82, 163	35 ₄ 164	2 16
29	Influence of adsorbed milk protein type and surface concentration on the quiescent and shear stability of butteroil emulsions. <i>International Dairy Journal</i> , 1999 , 9, 683-691	3.5	49
28	A study of fat and air structures in ice cream. <i>International Dairy Journal</i> , 1999 , 9, 817-829	3.5	133
27	Gelation of commercial fractions of Elactoglobulin and Elactalbumin. <i>International Dairy Journal</i> , 1997 , 7, 79-85	3.5	34
26	Colloidal aspects of ice cream review. <i>International Dairy Journal</i> , 1997 , 7, 363-373	3.5	248
25	Instability and Partial Coalescence in Whippable Dairy Emulsions. <i>Journal of Dairy Science</i> , 1997 , 80, 262	20 ₄ 263	0 149
24	Partial coalescence and structure formation in dairy emulsions. <i>Advances in Experimental Medicine and Biology</i> , 1997 , 415, 137-48	3.6	2
23	Texture-structure relationships in foamed dairy emulsions. <i>Food Research International</i> , 1996 , 29, 1-13	7	116
22	Structure and stability of the glassy state in rapidly and slowly cooled carbohydrate solutions. <i>Food Research International</i> , 1996 , 29, 207-213	7	28
21	Osmodehydrofreezing of apples: structural and textural effects. <i>Food Research International</i> , 1996 , 29, 471-479	7	80
20	Glass transitions in aqueous carbohydrate solutions and their relevance to frozen food stability. <i>Thermochimica Acta</i> , 1996 , 280-281, 449-464	2.9	67
19	Flow Characteristics of Viscous, Non-Newtonian Fluids in Holding Tubes of HTST Pasteurizers. <i>Journal of Food Science</i> , 1996 , 61, 573-576	3.4	3

18	STRUCTURAL DEVELOPMENT IN ICE CREAM D YNAMIC RHEOLOGICAL MEASUREMENTS. <i>Journal of Texture Studies</i> , 1995 , 26, 517-536	3.6	63
17	Thermal, mechanical and molecular relaxation properties of stabilized sucrose solutions at sub-zero temperatures. <i>Food Research International</i> , 1995 , 28, 1-8	7	43
16	The use of thermal analysis in the development of a better understanding of frozen food stability. <i>Pure and Applied Chemistry</i> , 1995 , 67, 1801-1808	2.1	48
15	Influence of stabilizers and freezing rate on the stress relaxation behaviour of freeze-concentrated sucrose solutions at different temperatures. <i>Food Hydrocolloids</i> , 1995 , 9, 181-188	10.6	14
14	Effect of freezing rate on the thermal, mechanical and physical aging properties of the glassy state in frozen sucrose solutions. <i>Thermochimica Acta</i> , 1994 , 246, 271-283	2.9	41
13	Rheological properties of dextran related to food applications. <i>Food Hydrocolloids</i> , 1994 , 8, 609-623	10.6	36
12	Properties of dextran as a cryoprotectant in ice cream. <i>Food Hydrocolloids</i> , 1994 , 8, 625-633	10.6	7
11	Measuring and interpreting the glass transition in frozen foods and model systems. <i>Food Research International</i> , 1994 , 27, 187-189	7	36
10	Viscosity of Ice Cream Mix at Pasteurization Temperatures. <i>Journal of Dairy Science</i> , 1994 , 77, 2207-221	34	14
9	The Influence of Polysaccharides on the Glass Transition in Frozen Sucrose Solutions and Ice Cream. <i>Journal of Dairy Science</i> , 1993 , 76, 1268-1277	4	133
8	Low-temperature stability and the glassy state in frozen foods. <i>Food Research International</i> , 1992 , 25, 317-325	7	84
7	Flow Characteristics and Holding Time Calculations of Ice Cream Mixes in HTST Holding Tubes. Journal of Food Protection, 1992 , 55, 34-37	2.5	17
6	Hydrocolloid/Milk Gel Formation and Properties. <i>Journal of Food Science</i> , 1992 , 57, 96-102	3.4	78
5	Replacement of Carbon-refined Corn Syrups with Ion-exchanged Corn Syrups in Ice Cream Formulations. <i>Journal of Food Science</i> , 1990 , 55, 827-829	3.4	6
4	Influence of Various Milk Protein Isolates on Ice Cream Emulsion Stability. <i>Journal of Dairy Science</i> , 1989 , 72, 385-397	4	49
3	Action of Emulsifers in Promoting Fat Destabilization During the Manufacture of Ice Cream. <i>Journal of Dairy Science</i> , 1989 , 72, 18-29	4	130
2	Dairy Product Processing Equipment193-214		
1	Effects of Soy Proteins and Hydrolysates on Fat Globule Coalescence and Whipping Properties of Recombined Low-Fat Whipped Cream. <i>Food Biophysics</i> ,1	3.2	О